Présentation

Article interactif

1 - PRINCIPE DU MICROSCOPE EN CHAMP PROCHE

2 - MICROSCOPE À EFFET TUNNEL

3 - MICROSCOPE À FORCE ATOMIQUE ET MICROSCOPIES DE FORCE

4 - MICROSCOPE OPTIQUE EN CHAMP PROCHE

5 - INSTRUMENTATION

6 - CONCLUSION

7 - GLOSSAIRE

8 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : P895 v3

Microscope optique en champ proche
Microscopie à sonde locale

Auteur(s) : Agnès PIEDNOIR, David ALBERTINI

Date de publication : 10 juin 2023

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Cet article traite de la microscopie en champ proche ou à sonde locale. Ce type de microscopie est basé sur la détection d'une propriété physique en surface (tel un courant électrique, une force, des photons) à l'échelle locale. Son principe est très différent de celui des microscopes classiques, une pointe vient sonder les informations à l’extrême surface de l'échantillon. La technique a considérablement évolué depuis l'avènement des nanotechnologies et elle apporte maintenant de nombreuses réponses sur les propriétés des matériaux à l'échelle de la molécule ou de l'atome.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Agnès PIEDNOIR : Ingénieure de Recherche au CNRS - Institut Lumière Matière, Villeurbanne, France

  • David ALBERTINI : Ingénieur de Recherche au CNRS - Institut des Nanotechnologies de Lyon, Villeurbanne, France

INTRODUCTION

L’apparition en 1982 du microscope à effet tunnel a constitué une révolution dans le domaine des microscopies en introduisant le concept de microscopie de champ proche qui est à la base des microscopes à sonde locale. Différentes dans leur principe des microscopies traditionnelles, les micro-scopies à sonde locale (ou de champ proche) se développent en effet à partir des avancées scientifiques et techniques de la microscopie à effet tunnel. Utilisant toutes le balayage d’une pointe-sonde à proximité d’un échantillon, elles fournissent des images qui sont des cartographies à très haute résolution de propriétés spécifiques de la surface de l’échantillon selon le type de sonde utilisée. Diverses propriétés (structurales, électroniques, chimiques, optiques…) et leurs variations locales à l’échelle nanométrique ou subnanométrique peuvent être ainsi imagées et étudiées. Grâce à leur grand pouvoir de résolution, les microscopies à sonde locale apportent un nouvel éclairage et sont complémentaires des microscopies classiques pour étudier la matière jusqu’à l’échelle atomique.

Dans les années 2020, après plusieurs décennies de développement, de nombreux laboratoires de recherche et de l’industrie utilisent ces instruments d’observation et d’analyse. Ils permettent d’étudier les propriétés locales de surfaces (ou d’interfaces) dans des conditions très variées selon les applications : ultravide pour la physicochimie des surfaces, milieu liquide pour la biologie et l’électrochimie, atmosphère contrôlée pour toutes sortes de matériaux et pour la métrologie. Le tableau 1 liste de façon non exhaustive les microscopes à champ proche qui permettent d’accéder à des propriétés locales caractéristiques d’un échantillon.

Ces instruments de caractérisation de surface ont d’abord été détournés pour devenir des outils de gravure à l’échelle nanométrique (manipulation d’atomes de surface, fabrication de structures de taille nanométrique, gravure de motifs). Actuellement, pour des applications en biotechnologie et nanofluidique, certains microscopes ont la capacité de déposer localement des atolitres (10–18 litre) de fluide pouvant contenir des objets.

Il existe une abondante littérature et de nombreux ouvrages de revue sur les microscopies à sonde locale. Dans cet article, nous dégagerons seulement les principales caractéristiques de ces instruments et illustrerons les nombreux champs d’application dans différents domaines de la physique, de la biologie, de la métrologie et des nanotechnologies. Après la description du principe général d’un microscope à sonde locale et de son fonctionnement, nous nous attacherons à étudier de façon plus détaillée les premiers microscopes. Pour chaque instrument nous montrerons les impacts en recherche fondamentale (physique, chimie et biologie), métrologie et technologie. Nous traiterons ainsi de la microscopie par effet tunnel et de ses applications. Le microscope à force atomique, plus versatile et plus universel, a fait l’objet de nombreux développements et nous consacrerons un grand paragraphe aux modes historiques et plus récents. Un dernier paragraphe portera sur la microscopie de champ proche optique et ses applications. Les problèmes généraux de l’instrumentation communs à ces microscopes seront traités à la fin de l’article.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v3-p895

CET ARTICLE SE TROUVE ÉGALEMENT DANS :

Accueil Ressources documentaires Mesures - Analyses Mesures mécaniques et dimensionnelles Nanométrologie Microscopie à sonde locale Microscope optique en champ proche

Accueil Ressources documentaires Mécanique Frottement, usure et lubrification Surfaces Microscopie à sonde locale Microscope optique en champ proche

Accueil Ressources documentaires Sciences fondamentales Nanosciences et nanotechnologies Nanosciences : concepts, simulation et caractérisation Microscopie à sonde locale Microscope optique en champ proche

Accueil Ressources documentaires Mesures - Analyses Techniques d'analyse Techniques d'analyse par imagerie Microscopie à sonde locale Microscope optique en champ proche


Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

4. Microscope optique en champ proche

Les lecteurs intéressés pourront également consulter l’article spécialisé [P 862].

4.1 Principes du microscope optique en champ proche

La limite de résolution spatiale atteinte en microscopie optique classique (limite de diffraction dite limite d’Abbe) est de l’ordre de λ/2 où λ est la longueur d’onde du rayonnement. Les ondes électromagnétiques à la longueur d’onde λ qui interagissent avec un objet sont diffractées en deux composantes : d’une part des ondes progressives à basse fréquence spatiale (< 2/λ) et d’autre part des ondes évanescentes de fréquence spatiale supérieure à 2/λ. La diffraction agit comme un filtre passe-bas vis-à-vis des fréquences spatiales de l’échantillon et seules les ondes progressives atteignent le détecteur placé loin de l’échantillon comme en optique classique. Les informations sub-longueur d’onde sont confinées dans le plan perpendiculaire sur des distances très inférieures à λ et sont indétectables par les méthodes classiques optiques. Cette zone de confinement est le domaine du champ proche et l’explorer permet de détecter des fréquences spatiales bien supérieures à celles détectées en régime de champ lointain, donc de déceler des détails avec une résolution latérale bien inférieure à λ .

Pour y accéder, on peut, soit éclairer la surface avec des ondes évanescentes qui seront diffractées par les petits détails et il sera possible de récupérer les informations en champ lointain, soit éclairer par des ondes progressives qui donneront naissance à des ondes évanescentes par diffraction sur les petits détails de la surface...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

TEST DE VALIDATION ET CERTIFICATION CerT.I. :

Cet article vous permet de préparer une certification CerT.I.

Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.

Obtenez CerT.I., la certification
de Techniques de l’Ingénieur !
Acheter le module

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Microscope optique en champ proche
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BINNIG (G.), ROHRER (H.) -    -  Rev. Mod. Phys., 59, 615 (1987). doi : 10.1103/RevModPhys.59.615

  • (2) - FRENKEL (J.) -    -  Phys. Rev., 36, 1604 (1930). doi : 10.1103/PhysRev.36.1604

  • (3) - ESAKI (L.) -    -  Phys. Rev., 109, 603 (1958). doi : 10.1103/PhysRev.109.603

  • (4) - BINNIG (G.), ROHRER (H.), GERBER (C.), WEIBEL (E.) -    -  Appl. Phys. Lett., 40, 178 (1982). doi : 10.1103/PhysRevLett.49.57

  • (5) - VERNISSE (L.) -   Thèse de l'université Paul Sabatier,  -  Toulouse (2014). http://thesesups.ups-tlse.fr/2421/

  • (6) - ALBERTINI (D.) -   Thèse de l'université Aix-Marseille II  -  (1998).

  • ...

1 Annuaire

HAUT DE PAGE

1.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)

Calculer la raideur d'un levier : https://sadermethod.org/

Des mêmes auteurs :

ACHETER un AFM – Photoniques 90 (2018). Une liste des fabricants de microscopes et des fabricants/distributeurs de pointes est disponible.

HAUT DE PAGE

1.2 Documentation – Formation – Séminaires

Nanocar race : course de nanovoiture par STM. Quelques liens utiles : https://www.memo-project.eu/flatCMS/index.php/Nanocar-Race-II https://lejournal.cnrs.fr/videos/au-coeur-de-la-plus-petite-course-de- voitures-au-monde

HAUT DE PAGE

1.3 Organismes – Fédérations – Associations (liste non exhaustive)

Réseau des Microscopies à Sondes Locales (RéMiSoL) : réseau technologique de la MITI (Mission pour les initiatives...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire

QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE

1/ Quiz d'entraînement

Entraînez vous autant que vous le voulez avec les quiz d'entraînement.

2/ Test de validation

Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.

Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS