Présentation

Article

1 - CONTEXTE : FILIÈRES ET BESOINS DU PHOTOVOLTAÏQUE

2 - PASSIVATION DES CELLULES PHOTOVOLTAÏQUES EN SILICIUM CRISTALLIN À HAUT RENDEMENT

3 - APPLICATIONS DE L’ALD POUR LES CELLULES SOLAIRES DE 2E ET 3E GÉNÉRATIONS

4 - CONCLUSION

5 - GLOSSAIRE

Article de référence | Réf : RE257 v1

Contexte : filières et besoins du photovoltaïque
ALD pour les cellules photovoltaïques

Auteur(s) : Danièle BLANC PELISSIER, Nathanaelle SCHNEIDER

Date de publication : 10 nov. 2016

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

ABSTRACT

Atomic layer deposition for photovoltaics

This article deals with the applications of atomic layer deposition (ALD) to the field of photovoltaics (PV). After a brief review of the PV conversion and its issues, the main industrial use of ALD for PV (passivation layers on 1st generation crystalline silicon solar cells), together with various examples of applications for the 2nd and 3rd generation solar cell are presented. They illustrate the various advantages (uniformity, conformity of ultra-thin layers, material engineering) and the limitations (deposition rate) of ALD for the development of efficient solar cells.

Auteur(s)

  • Danièle BLANC PELISSIER : Chargée de recherche CNRS - Institut des nanotechnologies de Lyon, CNRS, INSA de Lyon et université de Lyon, Villeurbanne, France

  • Nathanaelle SCHNEIDER : Chargée de recherche CNRS - Institut de recherche et développement de l’énergie photovoltaïque (IRDEP), UMR 7174 EDF-CNRS-Chimie ParisTech, Chatou, France - Institut du Photovoltaïque d’Ile de France (IPVF)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

La conversion photovoltaïque (PV) est une composante incontournable du mix énergétique et connait une très forte croissance grâce aux baisses de coûts combinées aux politiques de soutien et aux avancées technologiques. Cet article analyse la contribution du dépôt par couche atomique ou ALD (Atomic Layer Deposition) aux technologies de cellules solaires.

L’ALD est une technique de dépôt chimique en phase vapeur qui permet la croissance de matériaux inorganiques en couches ultraminces, uniformes, conformes, d’épaisseur subnanométrique. Basée sur l’introduction séquentielle de précurseurs, elle met en jeu des réactions chimiques de surface et des mécanismes de saturation autolimitants qui permettent une ingénierie de matériaux à l’échelle atomique.

Les applications de l’ALD pour le PV sont diverses, avec des degrés de maturité différents : de la passivation de cellules de type industriel en silicium aux nouvelles architectures innovantes. Cet article présente les principales utilisations de l’ALD pour le PV et discute des atouts et des limites du procédé dans un domaine où toute innovation doit satisfaire aux contraintes de coûts, de dimensions et de stabilité dans le temps.

Nota : le lecteur trouvera en fin d’article un tableau des sigles, notations et symboles utilisés tout au long de l’article.

Points clés

Domaine : Techniques de dépôt de couches minces

Degré de diffusion de la technologie : Croissance

Technologies impliquées : Dépôt par couche atomique (ALD, Atomic Layer Deposition)

Domaines d’application : Photovoltaïque

Principaux acteurs français :

  • Pôles de compétitivité : Tenerrdis

  • Centres de compétence : CEA-INES, IPVF, Institut des nanotechnologies de Lyon, IRDEP, Institut d’électronique, de microélectronique et de nanotechnologie (Lille), Laboratoire des matériaux et du génie physique (Grenoble)

  • Industriels : Air Liquide, EDF, Encapsulix, Enhélios

Autres acteurs dans le monde :

Argonne National Laboratory, École Polytechnique Fédérale de Lausanne, Eindhoven University of Technology, Fraunhofer Institute for Solar Energy Systems, Stanford University, Nanyang Technological University, Uppsala University, Energy research Centre of the Netherlands (ECN), Beneq, Levitech, Picosun, SolayTec, Solliance, TNO.

Contact : [email protected], [email protected]

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

ALD   |   solar cell   |   passivation   |   interfaces   |   material engineering

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-re257


Cet article fait partie de l’offre

Innovations technologiques

(177 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

1. Contexte : filières et besoins du photovoltaïque

1.1 Principe de la conversion photovoltaïque et principales filières technologiques

Le principe de la conversion de la lumière en électricité peut être résumé de la façon suivante : les photons incidents d’énergie suffisante sont absorbés et créent des charges électriques mobiles dans le matériau qui sont séparées et transportées vers les contacts métalliques pour être utilisées dans un circuit électrique extérieur.

Une description détaillée des principes de la conversion photovoltaïque peut être trouvée dans [BE8578].

Les cellules photovoltaïques peuvent être classées en différentes catégories suivant les matériaux absorbeurs utilisés et/ou leur mise en forme. On distingue généralement les cellules en silicium cristallin (souvent appelées « cellules de 1re génération » qui représentent environ 90 % de la production), les cellules en couches minces inorganiques ou organiques (dites de « 2e génération » représentant environ 10 % de la production) et enfin les cellules de 3e génération qui englobent les cellules à base de semi-conducteurs III-V (multi-jonctions à très haut rendement) et les concepts avancés.

Une cellule photovoltaïque standard en silicium est constituée d’une plaquette (wafer) de silicium de type p (surface 156 × 156 mm2, épaisseur ~ 180 µm) qui assure la fonction d’absorbeur. Un collecteur d’électrons (émetteur) est formé en face avant par diffusion de phosphore (zone n+). Un collecteur de trous en face arrière est réalisé grâce à un champ répulsif pour les électrons (zone p+), obtenu par diffusion de la pâte de sérigraphie à base d’aluminium qui constitue le contact électrique en face arrière de la cellule. Les contacts électriques en face avant sont également réalisés...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Innovations technologiques

(177 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Contexte : filières et besoins du photovoltaïque
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - GREEN (M.A.), EMERY (K.), HISHIKAWA (Y.), WARTA (W.), DUNLOP (E.D.) -   « Solar cell efficiency tables (Version 45) »,  -  Prog. Photovolt: Res. Appl., 23:1-9 (2015).

  • (2) - CLUGSTON (D.A.), BASORE (P.A.) -   PC1D Version 5: 32-Bit solar cell modeling on personal computers.  -  26th IEEE Photovoltaic Specialists Conference 207-210 (1997).

  • (3) - HAYAFUJI (N.), ELDALLAL (G.M.), DIP (A.), COLTER (P.C.), EL-MASRY (N.A.), -BEDAIR (S.M.) -   « Atomic layer epitaxy of device quality AlGaAs and AlAs ». Appl. Surf. Sci.,  -  82 18-22 (1994).

  • (4) - BAKKE (J.R.), PICKRAHN (K.L.), BRENNAN (T.P.), BENT (S.F.) -   « Nanoengineering and interfacial engineering of photo-voltaics by atomic layer deposition ». Nanoscale,  -  3 3482-3508 (2011).

  • (5) - VAN DELFT (J.), GARCIA-ALONSO (D.), KESSELS (W.) -   « Atomic layer deposition for photovoltaics: applications and prospects for solar cell manufacturing ». Semiconductor Science and Technology,  -  27 074002 (2012).

  • ...

1 Outils logiciels

PC1D (http://www.pveducation.org/pvcdrom/characterisation/pc1d) Logiciel libre de simulation (à une dimension) de cellules photovoltaïques

PV Lighthouse ( https://www.pvlighthouse.com.au/). Site de ressources et de calcul en ligne pour le photovoltaïque

HAUT DE PAGE

2 Sites Internet

ALD Pulse

http://aldpulse.com/

PVeducation

http://pveducation.com/

HAUT DE PAGE

3 Événements

Congrès : European PV Solar Energy Conference and Exhibition EU-PVSEC. Congrès (conférences + salon) ayant lieu chaque année dans une ville européenne. https://www.photovoltaic-conference.com/

Congrès : IEEE Photovoltaic Specialists Conference. European PV Solar Energy Conference and Exhibition EU-PVSEC. Congrès (conférence + salon) ayant lieu chaque année dans une ville américaine. http://www.ieee-pvsc.org/

Congrès : AVS-ALD conference....

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Innovations technologiques

(177 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS