Présentation
EnglishRÉSUMÉ
Cet article décrit les technologies utilisées dans les robots humanoïdes. Suivant l’application visée, des indications sont données pour aider au choix de la structure mécanique, notamment le squelette, les différents actionneurs, la structure informatique et les capteurs. Deux types d’applications sont considérés : les robots humanoïdes à haute performance destinés à la robotique de service et d’intervention et les robots humanoïdes destinés à valider les modèles de l’être humain. La présentation se base sur les réalisations les plus marquantes du domaine. Un tableau synthétisant les différentes caractéristiques est donné en fin d'article.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Olivier STASSE : Directeur de recherche au CNRS Laboratoire d'analyse et d'architecture des systèmes, CNRS, Toulouse, France
INTRODUCTION
Il existe pour les robots humanoïdes deux grandes classes d'applications. La première vise à construire des systèmes polyvalents et performants capables d'agir dans des environnements humains. Éventuellement, ces robots agiront comme des collaborateurs robotiques, aussi appelés « cobots ». La deuxième classe vise à valider des concepts de recherche sur des modèles biologiques et/ou cognitifs. La division entre ces deux classes n'est pas toujours aisée, l'une profitant généralement des avancées scientifiques ou techniques réalisées dans l'autre. La différence est cependant flagrante lorsque l'on compare un robot comme Schaft conçu pour intervenir dans des environnements sinistrés, et le robot iCub conçu pour valider les modèles d'évolution de la cognition chez les enfants. Dans cet article, des principes spécifiques aux[nbsp ]robots humanoïdes sont présentés pour la conception de la structure mécanique suivant le contexte applicatif. La deuxième partie introduit des considérations liées au choix de la structure informatique permettant le contrôle du robot et l'implémentation d'applications distribuées complexes visant la réalisation de comportements évolués. La troisième partie explore les actionneurs utilisés classiquement et ceux qui ont vu le jour dernièrement en robotique humanoïde suite à diverses avancées techniques. Enfin, un tableau de synthèse récapitule les caractéristiques des principaux robots humanoïdes.
MOTS-CLÉS
Robotique humanoïde Robotique de service Robotique d'intervention Robotique manufacturière Composants des robots humanoïdes
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Génie industriel > Industrie du futur > Industrie du futur : outils technologiques > Technologies des robots humanoïdes > Conclusion
Accueil > Ressources documentaires > Automatique - Robotique > Robotique > Applications en robotique > Technologies des robots humanoïdes > Conclusion
Cet article fait partie de l’offre
Industrie du futur
(104 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Conclusion
Dans cet article, les différentes technologies intervenant dans les robots humanoïdes marcheurs ont été décrites. Ces dernières années ont vu plusieurs avancées technologiques spectaculaires, notamment concernant les robots à hautes performances comme ATLAS et Schaft. Leur rachat par Google et le fait qu'ils soient basés sur des technologies relativement différentes montrent le potentiel de ces plates-formes. On notera également que TORO et REEM-C ont été conçus en moins de deux ou trois années, là où les premières équipes ont mis dix ans avant de converger vers des plates-formes stables. Remarquons cependant que ces deux robots sont issus d'équipes ayant une bonne expérience de la robotique en général. Le lecteur trouvera ci-après un tableau récapitulatif des caractéristiques des robots humanoïdes les plus pertinents de ces dernières années. Pour des robots à hautes performances n'interagissant pas avec un être humain, on choisira une structure très rigide avec des moteurs puissants, une IMU et des capteurs de force dans les pieds. Il est recommandé de laisser suffisamment de place pour des cartes CPU puissantes qui pourront être mises à jour facilement. Dans le cas d'un robot en interaction avec des personnes, l'inclusion de compliance permet d'obtenir une sécurité mécanique supérieure. Elle se traduit par une complexité du contrôle plus importante et des modes de résonance propres du robot qui nécessitent quelques précautions dans la conception mécanique.
Cet article fait partie de l’offre
Industrie du futur
(104 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - ALFAYAD (S.) - Robot humanoïde HYDROÏD : actionnement, structure cinématique et stratégie de contrôle. - PhD thesis, Université de Versailles Saint-Quentin en Yvelines (2010).
-
(2) - ALFAYAD (S.), BEN OUEZDOU (F.), NAMOUN (F.), CHENG (G.) - High performance integrated electrohydraulic actuator for hydraulics – Part I : Principle, prototypel design and first experiments. - Sensors and Actuators A : Physical, 169, p. 115-123 (2011).
-
(3) - ALIREZAEI (H.), NAGAKUBO (A.), KUNIYOSHI (Y.) - A highly stretchable tactile distribution sensor for smooth surfaced humanoids. - In IEEE/RAS Int. Conf. on Humanoid Robotics (ICHR) (2007).
-
(4) - ANDO (N.), KURIHARA (S.), BIGGS (G.), SAKAMOTO (T.), NAKAMOTO (H.) - Software deployment infrastructure for component based rt-systems. - Journal of Robotics and Mechatronics, 23(13), p. 350-359 (2011).
-
(5) - ARGENTIERI (S.), PORTELLO (A.), BERNARD (M.), DANÉS (P.), GAS (B.) - The technology of binaural listening. - Chapter binaural systems in robotics,...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
IEEE Technical committee on Humanoid Robotics http://www.ieee-ras.org/humanoid-robotics
Description de Robot Operating System (ROS), site officiel http://www.ros.org/ (page consultée le 13/02/2014)
Site officiel de l'Open Source Robotics Foundation http://www.osrfoundation.org (page consultée le 20/02/2014)
Site officiel de Yarp http://www.yarp.it/latest/
Site officiel de OpenRTM http://www.openrtm.org/
Capteur de force KMSi de la société IPR http://www.iprworldwide.com/en/products/standard-components/force-and- torque-sensors/product-infos.html?tx_ttproducts_pi1[cat]=1462& tx_ttproducts_pi1[backPID]=79_ttproducts_pi1[product]=251& cHash=d25c92ecd764cff1415a7f8b5b6baa7a
HAUT DE PAGE
International Conference on Humanoid Robots, Innorobo
...Cet article fait partie de l’offre
Industrie du futur
(104 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive