Présentation
RÉSUMÉ
L’innovation dans le domaine biomimétique est devenue très active depuis 2015. En France c’est acté par : le CESE promulguant le biomimétisme d’intérêt public, l’inauguration du CEEBIOS, la création par le CNRS d’un groupe de travail BioComp, etc. Ces innovations dans le domaine des processeurs neuromorphiques s’inscrivent dorénavant dans le domaine d’applications de l’intelligence artificielle. Elles entrent en compétition avec l’apprentissage profond (Deep Learning) utilisé par de grandes sociétés internationales. L’apport du biomimétisme dans les processus calculatoires, présenté dans cet article, est un différenciateur important entre ces techniques.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Innovation in the biomimetic domain has become very active since 2015. Its actors in France are: the CESE by declaring biomimicry of public interest, the inauguration of the CEEBIOS, and the creation by the CNRS of a BioComp working group, etc. These innovations achieved on neuromorphic processors now take their place in the field of artificial intelligence applications. They compete with deep learning used by major international companies. The contribution of biomimicry in computation processes, presented in this article, is an important differentiator between these techniques.
Auteur(s)
-
Patrick PIRIM : Président - BVS-Tech, Paris, France
INTRODUCTION
Résumé : L’innovation dans le domaine biomimétique est devenue très active depuis 2015. En France c’est acté par : le CESE promulguant le biomimétisme d’intérêt public, l’inauguration du CEEBIOS, la création par le CNRS d’un groupe de travail BioComp, etc.
Ces innovations dans le domaine des processeurs neuromorphiques s’inscrivent dorénavant dans le domaine d’applications de l’intelligence artificielle. Elles entrent en compétition avec l’apprentissage profond (Deep Learning) utilisé par de grandes sociétés internationales. L’apport du biomimétisme dans les processus calculatoires, présenté dans cet article, est un différenciateur important entre ces techniques.
Abstract : The innovation in the biomimetic domain becoming very active since 2015. It's acted in France by: the CESE by promulgating the biomimicry of public interest, the inauguration of the CEEBIOS, and the creation by the CNRS of a workgroup BioComp, etc.
These innovations done on neuromorphic processors join from now on in the field of the artificial intelligence applications. They compete with the deep learning used by big international companies. Biomimicry contribution in the computation processes, presented in this article, is differential important one between these techniques.
Mots-clés : processeur bio-inspiré, représentation sémantique, histogramme spatio-temporel, perception, attracteur dynamique, processus neuromorphique, invariance perceptive, apprentissage non supervisé
Keywords : neuromorphic processor, bio-inspired, semantic representation, spatiotemporal histogram, perception, dynamic attractor, neuromorphic process, perceptive invariance, unsupervised learning
Domaine : Techniques d’imagerie et d’analyse par IA
Degré de diffusion de la technologie : Croissance | Processeur bio-inspiré -disponible
Technologies impliquées : Électronique numérique
Domaines d’application : Vision industrielle, TIC, IoT, ACAS, sécurité, -robotique, IA
Principaux acteurs français :
Industriels : BVS-tech, Chronocam, Spikenet
Pôles de compétitivité : Capdigital, Opticvalley, Systematics
Centre de compétence : CEEBIOS, gdr BIOCOMP, ISL
Autres acteurs dans le monde : Programme syNAPSE (IBM), NEUROGRID (Stanford), QUALCOMM, Movidius, Numenta
Contact : [email protected] ; http://www.bvs-tech.com
MOTS-CLÉS
processeur bio-inspiré représentation sémantique histogramme spatio-temporel perception attracteur dynamique processus neuromorphique invariance perceptive apprentissage non supervisé
KEYWORDS
neuromorphic processor | bio-inspired | spatiotemporal histogram | perception | dynamic attractor | neuromorphic process | perceptive invariance | unsupervised learning
VERSIONS
- Version archivée 1 de mai 2015 par Patrick PIRIM
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Technologies de l'information > Technologies logicielles Architectures des systèmes > Intelligence artificielle > Processeur de perception bio-inspiré : une approche neuromorphique > Procédé biomimétique versus apprentissage profond
Cet article fait partie de l’offre
Éco-conception et innovation responsable
(138 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
10. Procédé biomimétique versus apprentissage profond
L’apprentissage profond a été initialisé dans les années 90 avec Yann Lecun comme chef de file. En 2012, l’augmentation de performance calculatoire a permis d’utiliser des quantités très importantes de données et donc de pouvoir en extraire des éléments communs par corrélation croisée et apprentissage supervisé, en appliquant une adaptation des relations entre éléments locaux appelée « poids synaptique » ou CNN (pour Convolutional Neural Network). Ce procédé nécessite un calcul pour plusieurs échelles, la rotation est très mal gérée, et l’invariance est obtenue par une multicité de couches calculatoires. La mémorisation de l’information est distribuée, liée au support et variable en fonction des éléments appris. La mémoire n’est donc pas transférable entre deux supports différents. Ce procédé est surtout utilisé par des entreprises qui veulent traiter des données à très grande échelle.
Pour des applications de la vie courante, le procédé biomimétique va s’avérer beaucoup plus performant. La figure 16 en montre un exemple d’actualité avec l’avènement des véhicules autonomes : la détection et reconnaissance d’un panneau de signalisation par, d’un côté, le processeur Miriad-2 sorti récemment et acquis par INTEL en été 2016, de l’autre, le processeur USeR intégrant le procédé biomimétique décrit dans cet article.
Les imageurs de smartphone ont des définitions de plus en plus grandes – 20 Mpix prévus pour 2020 – impliquant une puissance de calcul en correspondance. L’être humain possède plus de 140 millions de capteurs visuels élémentaires intégrés dans chaque œil avec un nerf optique ayant environ 1 million de fibres nerveuses. C’est donc cette approche qui a été choisie pour extraire les représentations sémantiques d’une manière contextuelle et locales avec une visualisation de 12 Mpix en entrée et des traitements faits sur une dimension VGA de 0,3 Mpix pour les deux niveaux. La nature a effectué cette différentiation dans le capteur, et c’est certainement ce qui va arriver dans les capteurs de prochaines générations en intégrant la technologie des puces empilées. Le transfert des données entre le capteur et l’unité de traitement est actuellement le...
Cet article fait partie de l’offre
Éco-conception et innovation responsable
(138 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Procédé biomimétique versus apprentissage profond
BIBLIOGRAPHIE
-
(1) - HUBEL (D.H.) - Eye, brain and vision. - Scientific American Library, New York, OCLC 16649224, 240 p. (1988).
-
(2) - HUBEL (D.H.), WIESEL (T.N.) - Receptive fields of single neurons in the cat’s striate cortex. - J. Physiol. (London) 148, 574-591 (1959).
-
(3) - BACH-Y RITA (P.), COLLINS (C.C.), SAUNDERS (F.), WHITE (B.), SCADDEN (L.) - Vision substitution by tactile image projection. - Nature, 221, p. 963-964 (1969).
-
(4) - RENNO-COSTA (C.), LISMAN (J.E.), Verschure PFMJ - A Signature of Attractor Dynamics in the CA3 Region of the Hippocampus. - PLoS Comput Biol 10(5): e1003641. doi:10.1371/journal.pcbi.1003641 (2014).
-
(5) - NILSEN (K.E.), RUSSELL (I.J.) - The spatial and temporal representation of a tone on the guinea pig basilar membrane. - Proc. Nat. Acad. Sci. 97(22), 11751-11758 (2000).
-
(6)...
ANNEXES
BVS-Tech
QUALCOMM
Projet SyNAPSE
http://www.research.ibm.com/cognitive-computing/#fbid=y7cfK-SAicH
Projet Neurogrid
https://web.stanford.edu/group/brainsinsilicon/neurogrid.html
Human brain project
https://www.humanbrainproject.eu/en/
Hiérarchies de cartes corticales
http://www.sciences-cognitives.org/
NUMENTA
Movidius
Yann LECUN
http://www.college-de-france.fr/site/yann-lecun/course-2016-02-12-14h30.htm
HAUT DE PAGE
Procédé de guidage automatique de véhicule dans une voie de circulation, dispositif correspondant FR2884625
Procédé et dispositif automatisé de perception avec détermination et caractérisation de bords et de frontières d’objets d’un espace, construction de contours et applications FR2858447
Procédé et dispositif de perception visuelle active pour caractériser et reconnaître un objet, notamment aux fins d’identification et de localisation...
Cet article fait partie de l’offre
Éco-conception et innovation responsable
(138 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive