Présentation
EnglishRÉSUMÉ
L’innovation dans le domaine biomimétique est devenue très active depuis 2015. En France c’est acté par : le CESE promulguant le biomimétisme d’intérêt public, l’inauguration du CEEBIOS, la création par le CNRS d’un groupe de travail BioComp, etc. Ces innovations dans le domaine des processeurs neuromorphiques s’inscrivent dorénavant dans le domaine d’applications de l’intelligence artificielle. Elles entrent en compétition avec l’apprentissage profond (Deep Learning) utilisé par de grandes sociétés internationales. L’apport du biomimétisme dans les processus calculatoires, présenté dans cet article, est un différenciateur important entre ces techniques.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Patrick PIRIM : Président - BVS-Tech, Paris, France
INTRODUCTION
Résumé : L’innovation dans le domaine biomimétique est devenue très active depuis 2015. En France c’est acté par : le CESE promulguant le biomimétisme d’intérêt public, l’inauguration du CEEBIOS, la création par le CNRS d’un groupe de travail BioComp, etc.
Ces innovations dans le domaine des processeurs neuromorphiques s’inscrivent dorénavant dans le domaine d’applications de l’intelligence artificielle. Elles entrent en compétition avec l’apprentissage profond (Deep Learning) utilisé par de grandes sociétés internationales. L’apport du biomimétisme dans les processus calculatoires, présenté dans cet article, est un différenciateur important entre ces techniques.
Abstract : The innovation in the biomimetic domain becoming very active since 2015. It's acted in France by: the CESE by promulgating the biomimicry of public interest, the inauguration of the CEEBIOS, and the creation by the CNRS of a workgroup BioComp, etc.
These innovations done on neuromorphic processors join from now on in the field of the artificial intelligence applications. They compete with the deep learning used by big international companies. Biomimicry contribution in the computation processes, presented in this article, is differential important one between these techniques.
Mots-clés : processeur bio-inspiré, représentation sémantique, histogramme spatio-temporel, perception, attracteur dynamique, processus neuromorphique, invariance perceptive, apprentissage non supervisé
Keywords : neuromorphic processor, bio-inspired, semantic representation, spatiotemporal histogram, perception, dynamic attractor, neuromorphic process, perceptive invariance, unsupervised learning
Domaine : Techniques d’imagerie et d’analyse par IA
Degré de diffusion de la technologie : Croissance | Processeur bio-inspiré -disponible
Technologies impliquées : Électronique numérique
Domaines d’application : Vision industrielle, TIC, IoT, ACAS, sécurité, -robotique, IA
Principaux acteurs français :
Industriels : BVS-tech, Chronocam, Spikenet
Pôles de compétitivité : Capdigital, Opticvalley, Systematics
Centre de compétence : CEEBIOS, gdr BIOCOMP, ISL
Autres acteurs dans le monde : Programme syNAPSE (IBM), NEUROGRID (Stanford), QUALCOMM, Movidius, Numenta
Contact : [email protected] ; http://www.bvs-tech.com
MOTS-CLÉS
processeur bio-inspiré représentation sémantique histogramme spatio-temporel perception attracteur dynamique processus neuromorphique invariance perceptive apprentissage non supervisé
VERSIONS
- Version archivée 1 de mai 2015 par Patrick PIRIM
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Technologies de l'information > Technologies logicielles Architectures des systèmes > Intelligence artificielle > Processeur de perception bio-inspiré : une approche neuromorphique > Exemple d’apprentissage supervisé en perception visuelle
Cet article fait partie de l’offre
Éco-conception et innovation responsable
(138 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
11. Exemple d’apprentissage supervisé en perception visuelle
À la figure 9 nous avons montré l’intérêt de la perception multi-échelle afin d’en acquérir une dimension invariante. Dans cet exemple, le calcul d’histogramme est monolinéaire, les représentations structurales sont l’exploitation des bords orientés. Dans la figure 17, chaque attracteur dynamique utilise un calcul d’histogramme bilinéaire, la représentation structurale est bimodale : courbures et bords orientés représentant l’angle du bord. La prise de vue est la même, par contre l’attracteur dynamique va générer une représentation plus optimale, différenciant courbes et droites. Le chiffre « 2 » se représente par une courbure convexe dans la partie haute suivie d’une diagonale haut droit vers bas gauche et d’une horizontale dans la partie basse. Cette description du tracé est la représentation sémantique perçue qui va émerger de la fonction bio-inspirée perceptive.
La carte 1 montre l’élément dans son contexte, l’attracteur dynamique associé en donnant une première description :
Élément rouge (h1, s1), fixe, orienté d’un angle α1, de dimension p1, q1 et en position x1, y1.
Ces éléments vont permettre de générer une carte 2 représentant l’élément dans son ensemble de taille unique. Les valeurs x1, y1 vont servir à translater le référentiel, p1 et q1 sa mise à l’échelle et α1 sa rotation. L’élément devient invariant par rapport à son contexte.
C’est ce qui est schématisé en figure 10 et mis en œuvre en figure 17.
La carte 2 montre les sous-parties de l’élément. On y retrouve la description faite du chiffre 2 ci-dessus.
Un premier attracteur dynamique s’accroche sur la partie perceptive la plus importante (ici la courbure)...
Cet article fait partie de l’offre
Éco-conception et innovation responsable
(138 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Exemple d’apprentissage supervisé en perception visuelle
BIBLIOGRAPHIE
-
(1) - HUBEL (D.H.) - Eye, brain and vision. - Scientific American Library, New York, OCLC 16649224, 240 p. (1988).
-
(2) - HUBEL (D.H.), WIESEL (T.N.) - Receptive fields of single neurons in the cat’s striate cortex. - J. Physiol. (London) 148, 574-591 (1959).
-
(3) - BACH-Y RITA (P.), COLLINS (C.C.), SAUNDERS (F.), WHITE (B.), SCADDEN (L.) - Vision substitution by tactile image projection. - Nature, 221, p. 963-964 (1969).
-
(4) - RENNO-COSTA (C.), LISMAN (J.E.), Verschure PFMJ - A Signature of Attractor Dynamics in the CA3 Region of the Hippocampus. - PLoS Comput Biol 10(5): e1003641. doi:10.1371/journal.pcbi.1003641 (2014).
-
(5) - NILSEN (K.E.), RUSSELL (I.J.) - The spatial and temporal representation of a tone on the guinea pig basilar membrane. - Proc. Nat. Acad. Sci. 97(22), 11751-11758 (2000).
-
(6)...
ANNEXES
BVS-Tech
QUALCOMM
Projet SyNAPSE
http://www.research.ibm.com/cognitive-computing/#fbid=y7cfK-SAicH
Projet Neurogrid
https://web.stanford.edu/group/brainsinsilicon/neurogrid.html
Human brain project
https://www.humanbrainproject.eu/en/
Hiérarchies de cartes corticales
http://www.sciences-cognitives.org/
NUMENTA
Movidius
Yann LECUN
http://www.college-de-france.fr/site/yann-lecun/course-2016-02-12-14h30.htm
HAUT DE PAGE
Procédé de guidage automatique de véhicule dans une voie de circulation, dispositif correspondant FR2884625
Procédé et dispositif automatisé de perception avec détermination et caractérisation de bords et de frontières d’objets d’un espace, construction de contours et applications FR2858447
Procédé et dispositif de perception visuelle active pour caractériser et reconnaître un objet, notamment aux fins d’identification et de localisation FR2843471
Procédé...
Cet article fait partie de l’offre
Éco-conception et innovation responsable
(138 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive