Présentation

Article

1 - LA FATIGUE

  • 1.1 - Définition de la fatigue
  • 1.2 - Manifestations de la fatigue
  • 1.3 - Causes de la fatigue
  • 1.4 - Comment l’expérimenter ?

2 - MESURES DE LA FATIGUE SELON DIFFÉRENTS CRITÈRES

  • 2.1 - Observation de la fatigue du conducteur à l’aide de mesures faites dans le véhicule
  • 2.2 - Mesures physionomiques
  • 2.3 - Mesures physiologiques

3 - SYSTÈMES INTELLIGENTS

  • 3.1 - Organes de perception
  • 3.2 - Organes de traitement et de raisonnement
  • 3.3 - Organes de décision

4 - SYSTÈMES DE DÉTECTION SANS CONTACT DE LA FATIGUE AU VOLANT

  • 4.1 - Détection du visage
  • 4.2 - Extraction des caractéristiques

5 - MODÉLISATION DE LA FATIGUE

6 - CRITIQUES DES SYSTÈMES EXISTANTS : CHALLENGES ET OPPORTUNITÉS

7 - CONCLUSION

8 - GLOSSAIRE

Article de référence | Réf : TRP1021 v1

Conclusion
Détection de la fatigue au volant

Auteur(s) : Alexandre LAMBERT, Céline BARTH, Manolo HINA, Amar Ramdane CHERIF, Aakash SONI, Assia SOUKANE

Date de publication : 10 nov. 2023

Cet article offert jusqu'au 15/11/2025
Consulter en libre accès

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

La fatigue au volant est une donnée encore mal détectée mais qui est responsable d’un grand nombre d’accidents. Les systèmes actuels de détection se basent tantôt sur l’état physique du conducteur, tantôt sur l’état du véhicule. Des données physiologiques sur le conducteur permettraient d’éclairer la détection de la fatigue mais via des modes opératoires invasifs et peu fiables en cas de fortes dettes de sommeil. En outre, la fatigue peut être perçue de façons très différentes d’un individu à un autre, son analyse en est d’autant plus complexe. Cet article fait un état des données que l’on peut acquérir du point de vue du conducteur et du véhicule : un premier issu des caractéristiques du véhicule et du conducteur, un second qui alimente un système expert.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Alexandre LAMBERT : Doctorant - ECE-Paris, Paris, France

  • Céline BARTH : Enseignant-chercheur - Laboratoire de l’ECE-Paris, Paris, France

  • Manolo HINA : Enseignant-chercheur - Laboratoire de l’ECE-Paris, Paris, France

  • Amar Ramdane CHERIF : Professeur - Université de Versailles Saint-Quentin, Laboratoire LISV, Vélizy, France

  • Aakash SONI : Enseignant-chercheur - Laboratoire de l’ECE-Paris, Paris, France

  • Assia SOUKANE : Directrice de la Recherche - ECE-Paris, Paris, France

INTRODUCTION

La fatigue au volant est un phénomène qui prend racine dans de multiples causes et a pour conséquence des accidents pouvant entraîner des dommages matériels et humains. Tout le monde s’accorde là-dessus mais lorsque l’on essaye de détecter la fatigue au volant pour prévenir ces accidents, les choses se compliquent. Existe-t-il une mesure directe de la fatigue ? Quels capteurs sont les plus adaptés ? Sur quels paramètres et sur quelles valeurs faut-il baser la détection ? Un système de détection est-il efficace pour des personnes au profil différent ? Beaucoup de questions peuvent émaner de la problématique de la fatigue au volant.

En dressant un portrait de la fatigue selon les différentes communautés nous allons explorer ses manifestations, ses causes et les manières de l’expérimenter. La pluralité des facteurs qui composent et influent sur la fatigue rendent sa modélisation complexe. Les chercheurs utilisent plusieurs méthodes d’acquisition des paramètres avec ou sans contact. Il est aussi possible d’observer le comportement du conducteur dans la conduite et l’environnement dans lequel il évolue. L’hétérogénéité des données nécessite des systèmes intelligents pour agréger ces données et prendre des décisions en temps réel.

Une grande variété de systèmes intelligents existent. Ils sont souvent décomposés en trois parties : organes de perception, organes de traitement et raisonnement et enfin les organes de décision. Pour la détection de la fatigue au volant, la perception peut être faite par des caméras ou des biocapteurs. Le traitement et le raisonnement se basent sur des techniques d’apprentissage automatique ou Machine Learning (ML). D’autres techniques comme les systèmes à base de règles sont aussi utilisées mais paraissent moins performantes face à l’apprentissage automatique profond ou Deep Learning (DL), sous-famille de techniques au sein de l’apprentissage automatique, qui est plus flexible et permet aux modèles de mieux s’adapter aux données complexes issues de la fatigue du conducteur.

Cependant il reste encore du chemin à parcourir avant de pouvoir concevoir des systèmes qui sont fiables et détectent réellement la fatigue du conducteur. Parmi les différentes étapes de conception des systèmes intelligents il est possible d’introduire des biais que ce soit dans le recueil des données, le traitement ou le raisonnement. Enfin les nouveaux champs de recherche dans l’intelligence artificielle, comme l’« explicabilité », permettent d’ouvrir de nouvelles pistes de réflexion pour développer des modèles plus robustes.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Cet article offert jusqu'au 15/11/2025
Consulter en libre accès

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-trp1021


Cet article fait partie de l’offre

Véhicule et mobilité du futur

(81 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

7. Conclusion

La problématique de la fatigue au volant nécessite une bonne compréhension et définition de celle-ci. Il existe plusieurs définitions et aucune n’est encore admise universellement par la communauté des chercheurs. Sans une définition claire, il est difficile de connaître et d’identifier les causes de la fatigue. Tout de même en se basant sur diverses définitions la communauté a étudié la variation de marqueurs à travers des appareils de mesure (électromesure, caméra, capteurs du véhicule, etc.). Les études ont montré que certains marqueurs étaient plus pertinents que d’autres. Cependant, il n’y a pas une homogénéisation des protocoles pour étudier les marqueurs ce qui rend difficile les comparaisons entre études. Les marqueurs physiologiques sont les plus directs car en contact avec le corps mais ils nécessitent de bonnes conditions pour être récoltés. Les appareils de mesures pour les marqueurs physiologiques sont très sensibles aux bruits extérieurs (vibrations, mouvements, etc.).

Les marqueurs physionomiques peuvent être très spécifiques de la fatigue et peuvent être acquis avec une plus grande fiabilité, sans déranger l’opérateur. Les marqueurs liés au véhicule (lors de la tâche de conduite) sont facilement accessibles mais sont peu spécifiques, il est difficile de distinguer la fatigue de l’inattention et d’autres situations « accidentogènes ». De toutes les catégories de marqueurs liés à la fatigue ce sont les marqueurs physionomiques qui sont les plus faciles à acquérir.

Cependant afin d’être sûr que les marqueurs extraits pourront prédire le degré de fatigue, il faut agréger les mesures des marqueurs au sein de systèmes experts. Ces systèmes experts vont pouvoir faire le lien entre la perception, le raisonnement et l’action sur l’environnement. Au sein du système expert il est important d’avoir un module de raisonnement qui est fiable. Les modèles d’apprentissage automatique sont couramment utilisés afin de généraliser des prédictions avec des données hétérogènes. Comme dans le cas de la détection de la fatigue au volant où les sources de données peuvent être issues de marqueurs physionomiques, physiologiques ou de la tâche de conduite elle-même.

Les modèles d’apprentissage automatique ont besoin d’avoir une définition sur laquelle va s’appuyer le modèle. Sans quoi le design expérimental,...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Cet article offert jusqu'au 15/11/2025
Consulter en libre accès

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Véhicule et mobilité du futur

(81 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - PHILLIPS (R.O.) -   A Review of Definitions of Fatigue – And a Step towards a Whole Definition.  -  Transportation Research Part F  : Traffic Psychology and Behaviour, vol. 29, p. 48-56, doi : 10.1016/j.trf.2015.01.003 (2015).

  • (2) - JOB (R.F.S.), DALZIEL (J.) -   Defining Fatigue as a Condition of the Organism and Distinguishing It From Habituation, Adaptation, and Boredom.  -  In Stress, Workload, and Fatigue, CRC Press, p. 11 (2000).

  • (3) - SAXBY (D.J.), MATTHEWS (G.), HITCHCOCK (E.M.), WARM (J.S.) -   Development of Active and Passive Fatigue Manipulations Using a Driving Simulator.  -  St Annual Meeting, p. 5 (2007).

  • (4) - CHEN (Z.), WU (C.), ZHONG (M.), LYU (N.), HUANG (Z.) -   Identification of Common Features of Vehicle Motion under Drowsy/Distracted Driving  : A Case Study in Wuhan, China.  -  Accident Analysis & Prevention, vol. 81, p. 251-259, doi : 10.1016/j.aap.2015.02.021 (2015).

  • (5) - THIFFAULT (P.), BERGERON (J.) -   Monotony of Road Environment and Driver Fatigue : A Simulator Study.  -  Accident...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Cet article offert jusqu'au 15/11/2025
Consulter en libre accès

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Véhicule et mobilité du futur

(81 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS