Article de référence | Réf : TRP4057 v1

New structural technologies
The challenges of launcher architecture in the context of New Space

Auteur(s) : Yves GOURINAT, Annafederica URBANO, Loris MASSONNAUD

Date de publication : 10 juil. 2024

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

À partir des principes physiques et thermodynamiques qui fondent l’architecture des lanceurs spatiaux, cet article propose une synthèse relative aux nouvelles architectures qui émergent dans le contexte du New Space. En effet, les industriels réalisent et opèrent des véhicules innovants, dans un nouvel équilibre entre maîtres d’ouvrage et maîtres d’œuvre, dans une nouvelle approche du partenariat public-privé. Le présent article fait le point sur les nouvelles technologies, les matériaux, les procédés et les moyens de propulsion qui prennent leur essor dans ce contexte, en les reliant aux fondements de la fuséologie.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Yves GOURINAT : Institut supérieur de l'aéronautique et de l'espace, Toulouse, France

  • Annafederica URBANO : Institut supérieur de l'aéronautique et de l'espace, Toulouse, France

  • Loris MASSONNAUD : Institut supérieur de l'aéronautique et de l'espace, Toulouse, France

INTRODUCTION

Access to space is the major factor determining sovereignty in terms of space exploration and industry. Indeed, while control of payloads is essential to mission accomplishment, the vector is no less indispensable.

Today's developments, grouped together under the term New Space, are the result of a historical evolution characterized by technological and organizational convergence. This type of convergence is not really new. The Apollo program, for example, saw the emergence of both breakthrough technologies (microelectronics) and radically new organizations (matrix structuring of organizations). But the scale of the New Space movement is unprecedented in terms of the rebalancing of the various players in the space industry.

This article describes some of the characteristic features of these current developments, centered around space transportation and the hybridizations underway. It is based on the architectural, propulsion and structural principles of launchers, and proposes an analysis of the prospects opened up by New Space.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-trp4057


Cet article fait partie de l’offre

Systèmes aéronautiques et spatiaux

(68 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

3. New structural technologies

3.1 The return of steel

Steel is making a remarkable comeback in the New Space sector, thanks to its intrinsic characteristics, which once again make it a suitable material for large-scale space applications. Its high mechanical strength enables it to withstand the loads and stresses inherent in launches and the extreme conditions of space. For example, high-grade stainless steel, such as type 304L or 316L, is used in the manufacture of rocket fuel tanks, providing the corrosion resistance and sealing essential for propellant storage. The emblematic example is SpaceX's Starship. It should be noted that this is really a return to basics, as the Saturn and Ariane 1-4 first stages already made extensive use of high-performance steels, not to mention solid rocket boosters.

Let's clear up a misunderstanding about steel right away. Comparisons between materials are in fact complex, taking into account the variety of stresses, couplings and bifurcations that may be non-linear. This allows us to make comparisons more precise.

In orders of magnitude compared to light alloys, steel's density is three times greater, but its main mechanical tensile properties – the simplest generic test – are also far more favorable. In the aerospace sector, and for lightweight structures in general, it's performance per unit mass that counts.

Let's take a closer look at why – despite the near mass equivalence of steel and aluminum in simple traction – aluminum has, until now, been used more than steel. For the same membrane flow, the aluminum shell will be three times thicker but of the same mass, compared to the steel solution. But when we consider compression or shear, i.e. as soon as buckling can occur, then thickness plays a major role, since quadratic flexural rigidity depends on the cube of thickness. So it's easy to see why, as soon as a complex load appears, light, thick materials have the advantage. This is also one of the reasons for the success of composites.

However, there's an additional element to the equation: pressurization. New means of active structural control make it possible to optimize pressurization in large structures, and steel is once again a leading structural material.

In addition, like aluminum, steel offers excellent thermal and electrical conductivity, making it suitable for cooling applications in space equipment, while regulating potential differences. Steel heat sinks effectively manage the heat dissipation generated by electronic components on board satellites and space probes.

Another advantage of steel over aluminum is its availability and ease of fabrication. It can be formed and assembled flexibly, enabling the manufacture of space structures of various sizes (at least if relatively mild steels are involved). For example, steel structures are used in the construction of satellites and space probes, offering an ideal...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Systèmes aéronautiques et spatiaux

(68 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
New structural technologies
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - GIL (D.), ALARY (D.), PASCO (X.), PISOT (N.), TEXIER (D.), TOULZA (S.) -   From new space to big space : How commercial space dream is becoming a reality….  -  Acta Astronautica. Volume 166, p. 431-443. DOI : 10.1016/j.actaastro.2019.08.031 (2020).

  • (2) - DURET (F.) -   Small and medium launch vehicles to extend the Ariane 5 transportation service.  -  Acta Astronautica. Volume 40, p. 171-182 doi.org/10.1016/S0094-5765(97)00139-2 (1997).

  • (3) - HENSON (G.), JONE (C.S.) -   III. Chapter 7 : Materials for Launch Vehicle Structures.  -  P. 435-504. Chapitre de livre. ISBN : 978-1-62410-488-6, DOI :10.2514/4.104893 (2018).

  • (4) - SUTTON (G.P.), BIBLARZ (O.) -   Rocket Propulsion Elements.  -  Ninth edition. John Wiley & Sons. Definitions and fundamentals. p. 26-44. Chemical rocket propellant performance analysis. p. 154-188. Liquid Propellant. p. 244-270. Solid Propellant Rocket Motor fundamentals. p. 434-490. ISBN 9781118753880 (2017).

  • (5) - FORTESCUE (P.), SWINERD (G.), STARK (J.) -   Spacecraft Systems Engineering.  -  Third...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Systèmes aéronautiques et spatiaux

(68 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS