Présentation
EnglishRÉSUMÉ
Cet article donne une revue des systèmes de télécommunications optiques spatiales. Ces systèmes sont envisagés pour certaines applications spatiales comme le transfert de données massif ou encore internet par satellite. L’article décrit les principaux sous-systèmes composant le lien optique, notamment la chaîne de communication, mais aussi la tête optique dont il explique le calcul du gain. La méthodologie pour clore le bilan de liaison pour les liens à faible dynamique est introduite. L’article mentionne ensuite les liens à haute dynamique, principalement due à la turbulence atmosphérique, et les moyens de s’en accommoder. La mise en place d’un lien optique est présentée. Pour finir, l’article discute de la capacité et de la disponibilité de ces systèmes.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
David PARRAIN : Architecte système télécommunication optique - Airbus Defence & Space, Toulouse, France
INTRODUCTION
Dans un monde de plus en plus connecté, les exigences en matière de communication ont augmenté de manière exponentielle. La domination des communications optiques dans le domaine terrestre ces dernières décennies s’explique par leurs capacités élevées de transmission de données sur de longues distances. Leur adoption croissante dans le domaine spatial a été motivée par la nécessité conjointe d’accroître les débits tout en réduisant la taille et le coût des systèmes. Les communications optiques spatiales montrent déjà toute leur efficacité sur les liens inter-satellites, notamment grâce à l’avènement des constellations en orbite basse (Space Development Agency (SDA), Starlink) et pour le rapatriement de données en passant par un satellite géosynchrone (European Data Relay Satellite System, EDRS). Les efforts de développements se concentrent maintenant sur l’augmentation des débits et sur la réalisation de liens traversant l’atmosphère, qui ajoute un niveau de complexité supplémentaire.
Les systèmes de télécommunications optiques spatiales possèdent, hormis la promesse de très hauts débits, quelques avantages supplémentaires par rapport aux systèmes radiofréquences (RF) :
-
il n’existe pas de réglementation sur l’utilisation de ces fréquences. Elles sont en effet tellement grandes et les faisceaux tellement étroits que le risque d’interférence avec un autre système est négligeable ;
-
leur discrétion les rend difficiles à espionner et à brouiller, ce qui suscite un vif intérêt pour les forces armées ;
-
leur compacité est plus importante par rapport aux systèmes radiofréquences (à débit équivalent) ;
-
ils réduisent les problématiques de compatibilité électromagnétique au niveau des engins spatiaux.
En revanche, ces systèmes souffrent encore de quelques points durs :
-
la spatialisation des composants terrestres n’est pas toujours aisée du fait des électroniques avancées utilisées ;
-
ils ne fonctionnent quasi exclusivement qu’en lien point-à-point ;
-
ils sont extrêmement sensibles à la couverture nuageuse, ce qui crée un impact fort sur la disponibilité pour certains types de liens ;
-
ils sont plus complexes lorsque la traversée de l’atmosphère turbulente rentre en compte.
Dans cet article, nous explorons en profondeur les principes fondamentaux des communications optiques spatiales, leurs avantages et leurs défis, ainsi que les applications qui émergent grâce à cette technologie. Nous discutons des différents types de liens optiques, des chaînes de communication, des terminaux lasers, des bilans de liaison à faible et haute dynamique. Puis, nous parlons des concepts de capacité et disponibilité.
Le lecteur trouvera en fin d’article un glossaire des termes utilisés.
MOTS-CLÉS
spatial télécommunication optique lien optique terminal optique en espace libre satellite chaîne de communication tête optique haute capacité
VERSIONS
- Version archivée 1 de juin 1987 par Patrick LESNE
- Version archivée 2 de févr. 2001 par Georges OTRIO
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Électronique - Photonique > Optique Photonique > Systèmes optroniques > Systèmes de télécommunications optiques spatiales > Différents types de liens pour différentes applications
Accueil > Ressources documentaires > Électronique - Photonique > Optique Photonique > Applications des lasers > Systèmes de télécommunications optiques spatiales > Différents types de liens pour différentes applications
Cet article fait partie de l’offre
Systèmes aéronautiques et spatiaux
(68 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Différents types de liens pour différentes applications
Deux grandes catégories de liens peuvent être distinguées dans le domaine des communications optiques spatiales :
-
celui qui s’établit entre deux terminaux embarqués sur deux satellites (quelles que soient leurs orbites respectives) ;
-
celui qui s’établit entre un terminal embarqué sur un satellite (ou autre engin spatial) et un terminal terrestre (sol, mer, avion…).
La différence majeure entre ces deux liens a trait au canal de propagation. Le premier lien s’établit entre deux terminaux séparés par du vide, alors que le second s’effectue en partie dans l’atmosphère terrestre. On parlera de lien optique inter-satellites (optical inter-satellite link (OISL)) pour le premier, et de lien optique traversant l’atmosphère (optical cross atmospheric link (OCAL)) pour le second (que nous appellerons cross-atmosphérique par la suite). La traversée de l’atmosphère induit des contraintes supplémentaires par rapport à la traversée du vide, notamment en termes de turbulence atmosphérique. Nous verrons ce que cela implique généralement en termes de bilan de liaison (§ 4).
Mentionnons ici les trois grands types d’orbites terrestres que sont :
-
l’orbite terrestre basse (low earth orbit (LEO)), située entre 350 et 2 000 km d’altitude ;
-
l’orbite géosynchrone (geosynchronous orbit (GEO)), située à 35 786 km d’altitude. La durée de l’orbite coïncide avec la période de rotation de la terre (dans le même sens). Cela offre une disponibilité de visibilité de 100 % pour une certaine surface au sol ;
-
l’orbite terrestre moyenne (medium earth orbit (MEO)), située entre 2 000 et 35 786 km d’altitude, intermédiaire entre les deux précédentes orbites.
La figure 1 illustre ces différentes orbites...
Cet article fait partie de l’offre
Systèmes aéronautiques et spatiaux
(68 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Différents types de liens pour différentes applications
BIBLIOGRAPHIE
-
(1) - PLANCHE (G.), CHORVALLI (V.) - SILEX in-orbit performances. - In International Conference on Space Optics – ICSO 2004, In SPIE – SPIE, vol. 10568, p. 668-676 (2018).
-
(2) - CAZAUBIEL (V.), PLANCHE (G.), CHORVALLI (V.), LE HORS (L.), ROY (B.), GIRAUD (E.), VAILLON (L.) et al - LOLA : A 40 000 km optical link between an aircraft and a geostationary satellite. - In Sixth International Conference on Space Optics, Proceedings of ESA/CNES ICSO 2006, held 27-30 June 2006 at ESTEC, Noordwijk, The Netherlands. Edited by A. Wilson. ESA SP-621. European Space Agency, 2006. Published on CDROM, id. 87, vol. 621 (2006).
-
(3) - ZECH (H.), HEINE (F.), TRÖNDLE (D.), SEEL (S.), MOTZIGEMBA (M.), MEYER (R.), PHILIPP-MAY (S.) - LCT for EDRS : LEO to GEO optical communications at 1, 8 Gbps between Alphasat and Sentinel 1a. - In Unmanned/Unattended Sensors and Sensor Networks XI ; and Advanced Free-Space Optical Communication Techniques and Applications, In SPIE – SPIE, vol. 9647, p. 85-92 (2015).
-
(4) - LOCHARD (J.), DE GUEMBECKER (N.), CHÉOUX-DAMAS (P.), CALMET (X.), GIRAUD (E.), JULLIEN (A.), GHEZAL (M.) et al - LASIN optical link on-board CO3D constellation. - In International Conference on Space Optics – ICSO 2022, In SPIE – SPIE, vol. 12777, p. 375-383 (2023).
- ...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Space Development Agency (2023). Optical Communications Terminal (OCT) Standard Version 3.1.0. United States Space Force.
https://www.sda.mil/wp-content/uploads/2023/06/SDA_OCT_Standard-3.1.0_Signed_Web_Version.pdf
The Consultative Commitee for Space Data Systems (CCSDS) (2019). Optical communications physical layer recommended standard ‘CCSDS 141.0-B-1’. National Aeronautics and Space Administration.
https://public.ccsds.org/Pubs/141x0b1.pdf
HAUT DE PAGE2.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
Terminal optique spatial
TESAT
Terminal optique spatial
Mynaric
Station optique sol
Airbus Defence & Space Netherlands
...
Cet article fait partie de l’offre
Systèmes aéronautiques et spatiaux
(68 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive