Présentation
RÉSUMÉ
Élément dynamique du système qualité, la maîtrise statistique du processus (MSP) est l’ensemble des méthodes et des actions préventives qui vise à amener un processus au niveau requis de qualité. Pour ce faire, les performances du processus de production sont évaluées, adaptées et surveillées statistiquement de façon à éviter les dérives et à maintenir la conformité du produit. Les paramètres de position et de dispersion de la population étudiée sont reportés sous forme de tracés sur les cartes de contrôle. Leur facilité de lecture en fait un outil visuel efficace pour suivre l’évolution du processus.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Françoise BOULANGER : Statisticienne, Rohm et Haas
-
Georges CHÉROUTE : Consultant, Institut Renault
-
Valérie JOLIVET : Responsable qualité, Essilor
INTRODUCTION
Ce texte est la nouvelle édition du dossier rédigé par Gérard BRUNSCHWIG et Alain PALSKY.
Un processus transforme des entrants, par exemple des matières premières, en sortants. Les sortants peuvent être des produits physiques ou des services. Le produit obtenu, physique ou non, présente des caractéristiques dont certaines sont importantes pour le client ou l’utilisateur. Cette transformation peut être différente selon le réglage de différents paramètres réglables du processus ou selon le niveau d’autres facteurs qui peuvent être subis (par exemple, la température extérieure).
Maîtriser le processus, c’est être capable de prévoir les caractéristiques du produit étant donné le niveau de l’ensemble des paramètres influents du processus. C’est aussi être capable d’ajuster les paramètres réglables du processus en fonction du niveau des facteurs influents subis pour que les caractéristiques du produit soient conformes aux attentes.
Parmi les facteurs agissant sur les caractéristiques du produit, que ces facteurs soient subis ou non, certains ont une influence très importante, d’autres moyenne, d’autres encore très faible. Comme lorsque l’on définit un produit, on admet une variabilité des caractéristiques du produit (intervalle de tolérance), on admet que certains facteurs peu influents sur les caractéristiques du produit ne soient pas identifiés et engendrent, du fait de leur fluctuation inconnue, une variabilité des caractéristiques des produits, dès lors que les caractéristiques du produit restent largement acceptables.
Pour garantir un produit conforme à des spécifications, deux solutions s’offrent au pilote du processus :
-
contrôler tous les produits si cela est possible (dans le cas d’un contrôle destructif, cela n’est pas possible) ;
-
avoir identifié l’ensemble des facteurs influents, avoir effectué les réglages pour que les caractéristiques des produits soient conformes aux attentes et avoir vérifié par le contrôle d’échantillons qu’aucun autre facteur inconnu jusque-là n’est apparu, c’est-à-dire que le résultat est conforme aux relations causes-effets déjà identifiées.
Du fait de ces définitions, deux cas d’application de la maîtrise statistique des processus (MSP) sont à distinguer :
-
les facteurs influents ne sont pas totalement identifiés : il faut observer les fluctuations du processus, déterminer lorsque des paramètres influents non identifiés apparaissent, identifier ces facteurs et trouver des parades à leur influence. Des investigations techniques sont nécessaires ;
-
les facteurs influents sont déjà totalement identifiés : il ne s’agit que de vérifier qu’il n’en apparaît pas de nouveau. Une technique de suivi avec de simples règles de réactivité en fonction d’observations, sans nécessairement l’utilisation de cartes de contrôle, peut s’avérer suffisante.
La mise en œuvre dans le premier cas (facteurs influents non totalement identifiés) ne se fera que si le rapport « bénéfices qualitatifs et quantitatifs attendus/investissement » est jugé satisfaisant. En revanche, dans le deuxième cas (facteurs influents totalement identifiés), il n’y a aucune raison de ne pas chercher à maîtriser le processus. Mais le plan de surveillance du processus doit clairement faire ressortir l’ensemble des paramètres du processus à verrouiller (et leur réglage éventuel en fonction des facteurs subis) pour garantir les produits conformes.
Ainsi, on appelle maîtrise statistique de processus (MSP), ou en anglais « statistical process control » (SPC), l’ensemble des méthodes et des actions permettant d’évaluer de façon statistique les performances d’un processus de production (au sens large), et de décider de le régler, si nécessaire, pour maintenir les caractéristiques des produits stables et conformes aux spécifications retenues. C’est un des éléments dynamiques du système qualité qui concourt à l’amélioration permanente des productions (cf. fascicule de documentation Afnor X06-030).
On entend par processus de production l’ensemble des éléments qui concourent à la production : matières premières, moyen, main-d’œuvre, milieu, méthode, que l’on représente souvent schématiquement par le diagramme des 5M (figure 1).
La MSP ne se limite pas à l’établissement de cartes de contrôle et à leur exploitation pour régler des « moyens » et maîtriser des processus : c’est une suite d’analyses qui comprend :
-
une réflexion sur le processus ;
-
une étude de l’aptitude des processus de fabrication et de contrôle, ce qui permet de choisir ou de modifier les appareillages à utiliser et de fixer correctement les spécifications ;
-
le choix et la mise en œuvre de méthodes statistiques de contrôle en cours de fabrication ;
-
le contrôle final, si nécessaire, des produits ;
-
l’exploitation des informations accumulées afin d’améliorer la connaissance du processus (identification et suppression progressive des causes de dérives).
La MSP est une méthode préventive de gestion de la qualité qui vise à amener tout processus au niveau requis de régularité de qualité et à l’y maintenir grâce à un système de surveillance statistique permettant de réagir rapidement et efficacement à des dérives, évitant ainsi la production de produits non conformes.
La MSP concerne essentiellement des fabrications de moyennes et grandes séries.
VERSIONS
- Version archivée 1 de juil. 1994 par Gérard BRUNSCHWIG, Alain PALSKY
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Mesures - Analyses > Instrumentation et méthodes de mesure > Méthodes de mesure > Maîtrise statistique des processus - Utilisation des cartes de contrôle > Paramètres des processus et caractéristiques des produits à maîtriser
Cet article fait partie de l’offre
Métier : responsable qualité
(252 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Paramètres des processus et caractéristiques des produits à maîtriser
1.1 Paramètres du processus
Pour maîtriser un processus, il est nécessaire de travailler sur les paramètres de ce processus plutôt que sur les caractéristiques du produit, c’est-à-dire d’identifier les relations causes-effets et de les quantifier au moins sommairement (par exemple, l’effet de la température sur la viscosité d’un polymère).
Différents outils peuvent être utilisés pour cette recherche, parmi lesquels :
-
arbre de défaillance ou arbre des causes ;
-
diagramme causes-effets (appelé aussi en « arêtes de poisson » ou d’« Ishikawa ») ;
-
études de corrélations et de régressions ;
-
plans d’expérience ;
-
analyse de données : en composantes principales...
1.2 Caractéristiques du produit
La MSP étant un outil de prévention, elle doit être utilisée là où il y a nécessité de réduire la probabilité d’apparition d’une non-conformité sur :
-
une caractéristique essentielle d’un produit qui, non respectée, causera une insatisfaction du client ;
-
une caractéristique non essentielle à l’usage chez le client mais qui, si elle n’est pas respectée, peut générer des surcoûts, des manques à gagner importants pour l’entreprise.
La mise en place d’un suivi MSP ne se fait pas nécessairement sur la caractéristique causant une insatisfaction du client, mais souvent de façon plus efficace sur une caractéristique permettant l’identification d’une cause influente, d’où une règle de réactivité. Prenons un exemple : l’épaisseur de peinture déposée par un robot sur une pièce métallique est la caractéristique jugée importante pour le client. Le réglage du robot a été déterminé pour que l’épaisseur sur la partie verticale soit à peu près égale à celle sur la partie horizontale. Une fluctuation de la différence d’épaisseur entre la partie verticale et la partie horizontale peut être l’indicateur d’un changement de la viscosité...
Cet article fait partie de l’offre
Métier : responsable qualité
(252 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Paramètres des processus et caractéristiques des produits à maîtriser
Ce texte est la nouvelle édition du dossier rédigé par Gérard BRUNSCHWIG et Alain PALSKY.
BIBLIOGRAPHIE
-
(1) - CAVÉ (R.) - Le contrôle statistique des fabrications - . Eyrolles (1966).
-
(2) - JURAN (J.) - Planifier la qualité - . Coll. Afnor Gestion (1989).
-
(3) - LAMOUILLE (J.L.), MURRY (B.), POTIÉ (C.) - La maîtrise statistique des procédés (SPC). Démarche et outils - . 126 p. Coll. Afnor Gestion (1989).
-
(4) - SOUVAY (P.) - La statistique, outil de la qualité - . 289 p. Coll. Afnor Gestion (1986).
-
(5) - Aide-mémoire pratique des techniques statistiques pour ingénieurs et techniciens supérieurs - . CERESTA (1986).
-
(6) - RYAN (T.) - Statistical methods for quality improvement - . Willey (1989).
-
...
DANS NOS BASES DOCUMENTAIRES
Revues
* - Revue de statistique appliquée publiée par l’Institut Henri Poincaré de l’Université Pierre et Marie Curie
* - Qualité en mouvement (MFQ)
* - Technometrics (ASQ)
* - Journal of Quality Technology (ASQ)
HAUT DE PAGE
###
NF ISO 2859-1 - 4-00 - Règles d’échantillonnage pour les contrôles par attributs – Partie 1 : procédures d’échantillonnage pour les contrôles lot par lot, indexés d’après le niveau de qualité acceptable (NQA). - -
NF ISO 2859-1 - 10-05 - Règles d’échantillonnage pour les contrôles par attributs – Partie 3 : procédures d’échantillonnage successif partiel. - -
NF ISO 2859-4 - 5-03 - Règles d’échantillonnage pour les contrôles par attributs – Partie 4 : procédures pour l’évaluation des niveaux déclarés de qualité. - -
NF ISO 2859-5 - 10-05 - Règles d’échantillonnage pour les contrôles par attributs – Partie 5 : systèmes de plans d’échantillonnage progressif pour le contrôle lot par lot, indexés d’après la limite d’acceptation de qualité (LAQ). - -
NF ISO 5725-1 - 12-94 - Application de la statistique – Exactitude (justesse et fidélité) des résultats...
Cet article fait partie de l’offre
Métier : responsable qualité
(252 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive