Présentation

Article interactif

1 - RÉALITÉ VIRTUELLE EN AIDE À LA CONCEPTION ET À L’ÉVALUATION DANS L’INDUSTRIE

2 - RÉALITÉ VIRTUELLE POUR LA FORMATION DANS L’INDUSTRIE

3 - MÉTHODOLOGIE « 3I2 » POUR CONCEVOIR UNE APPLICATION RV INDUSTRIELLE

4 - DÉMARCHE DE CONCEPTION D’UNE APPLICATION INDUSTRIELLE

5 - RÉALITÉ AUGMENTÉE POUR L’AIDE À L’ASSEMBLAGE ET À LA MAINTENANCE

6 - DIFFICULTÉS, CONTRAINTES ET LIMITES

  • 6.1 - Freins de nature culturelle
  • 6.2 - Freins de nature économique
  • 6.3 - Freins de nature organisationnelle

7 - CONCLUSION

Article de référence | Réf : TE5965 v2

Conclusion
Les véritables usages de la réalité virtuelle dans l'industrie

Auteur(s) : Philippe FUCHS

Date de publication : 10 févr. 2019

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

L’industrie fait de plus en plus appel aux technologies de la réalité virtuelle dans ses activités de conception, mais aussi dans celles du développement des produits et de la mise en place des processus industriels de fabrication. Cet article présente l’utilisation des différents outils de la réalité virtuelle, sur la base de multiples exemples. Une méthodologie 3Isera exposée, permettant de bien concevoir l’application de réalité virtuelle correspondant aux vrais besoins industriels. Un focus sera fait sur l’usage des techniques de réalité augmentée pour l’aide à l’assemblage et à la maintenance industrielle, ainsi que la formation en environnement virtuel en direction du personnel. Une analyse des potentialités et des limites de la réalité virtuelle clôture cet article.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Philippe FUCHS : Professeur de réalité virtuelle - École Mines ParisTech, Paris

INTRODUCTION

Cet article présente l’exploitation des potentialités de la réalité virtuelle dans le milieu industriel. Historiquement l’industrie manufacturière (automobile, aéronautique, activités ferroviaires…) exploite la réalité virtuelle depuis un quart de siècle et même plus ! L’expression « réalité virtuelle » n’existait pas quand on a développé les simulateurs de transport, il y a un demi-siècle environ, avec lesquels on immerge un conducteur pour aider à la conception et à l’évaluation du futur moyen de transport.

Définir la réalité virtuelle est une tâche indispensable. On trouve encore dans la littérature et dans les médias des définitions qui mélangent malencontreusement la finalité de la réalité virtuelle, ses fonctions, ses applications et les techniques sur lesquelles elle repose, telles que le visiocasque.

Il faut prendre du recul par rapport à tous les domaines d’activités qui revendiquent d’exploiter la réalité virtuelle. Après réflexion faite au début des années 1990, indépendamment des technologies exploitées, il est apparu que, dans tous les domaines, la finalité de la réalité virtuelle est de permettre à un usager d’agir physiquement dans un environnement artificiel, ce dernier étant créé numériquement pour être modifiable. Pour y agir physiquement, il faut déjà que l’usager y soit immergé, ce qui se fait via certains de ses sens. Et son activité physique se réalise par ses actions motrices (musculaires). Donc, en termes plus précis, plus scientifiques, nous parlerons d’activités sensorimotrices, au lieu d’activités physiques. Évidemment, si concrètement, techniquement il s’agit de proposer une activité sensorimotrice à une personne, il en découle aussi des activités cognitives (mentales) qui peuvent être le but recherché de l’application, les activités sensorimotrices n’étant alors qu’un moyen (figure 1).

Concernant l’environnement, artificiel au niveau sensorimoteur, celui-ci peut être totalement virtuel ou, dans les cas de la réalité augmentée, partiellement virtuel. La finalité que partagent depuis longtemps tous les acteurs travaillant dans ce domaine, est en conséquence  :

La finalité de la réalité virtuelle est de permettre à une personne, ou à plusieurs, des activités sensorimotrices et cognitives dans un environnement artificiel, créé numériquement, qui peut être imaginaire, symbolique ou une simulation de certains aspects du monde réel.

Cette définition précise que nous avons trois cas théoriques, fournissant des potentialités différentes pour les applications : créer un monde imaginaire (applications artistiques), exploiter des entités symboliques ou simuler certains aspects du monde réel. Pour les applications industrielles, nous exploitons le troisième cas, mais notons que des applications peuvent également bénéficier d’entités symboliques :

  • pour représenter des phénomènes physiques à assimiler par l’utilisateur ;

  • pour représenter symboliquement le temps. Classiquement, pour le déroulement temporel d’événements ou d’étapes, un diagramme chronologique est facilement visualisable symboliquement pour éclairer l’utilisateur ;

  • pour représenter symboliquement des espaces. Par exemple, dans une formation d’opérateurs sur une chaîne de montage se réalisant virtuellement, des indications symboliques peuvent signaler les zones dangereuses.

Depuis quinze ans environ, la réalité virtuelle est d’un usage quotidien pour aider à la conception dans certaines entreprises tandis que, pour d’autres, on est encore en phase de R&D. Pour les entreprises pionnières (automobile et aéronautique), il reste toutefois encore des recherches et des développements à effectuer pour certaines applications complexes. Un exemple d’application encore en R&D est la simulation d’un système de systèmes, comme le projet Sinetic, auquel notre équipe de recherche de Mines ParisTech a participé. Ce projet consiste à créer un simulateur d’un trafic de voitures autonomes, communicantes entre elles, et d’étudier, entre autres, le comportement d’un conducteur lors de certaines phases de conduite, grâce à la réalité virtuelle. Le système englobe un simulateur de trafic de voitures d’une ville, un simulateur de trafic à courte distance (zone d’un carrefour par exemple), des simulateurs des comportements dynamiques des voitures dans l’environnement routier, des simulateurs de comportement de conducteurs de conduite autonome et de conducteurs de conduite manuelle (ces derniers respectant plus ou moins le code de la route), un simulateur des communications entre véhicules (avec simulation des pertes de communications) et un simulateur de l’intérieur d’un véhicule où est immergé un vrai conducteur. Celui-ci doit, par exemple, sortir ou rentrer manuellement dans un peloton de voitures communicantes entre elles. Tous les simulateurs doivent fonctionner en synchrone. Un tel projet n’a pu être réalisé que grâce aux cinquante dernières années de R&D du domaine des simulateurs de transport.

La simulation de certains aspects du monde réel peut se décliner sous différents objectifs. Certaines activités en environnement artificiel sont proches des activités correspondantes en environnement réel, mais de quelle façon ? La similitude de l’environnement artificiel avec l’environnement réel n’est souvent réalisée que pour certaines modalités sensorielles, non pas qu’il y ait un obstacle technicoéconomique, mais parce que l’application ne l’exige pas. En exemple simple, il n’est pas nécessaire de simuler les accélérations et les vibrations sur le corps du conducteur d’une voiture pour tester l’ergonomie visuelle d’une planche de bord. La simulation visuelle peut suffire. Nous développerons au § 3 cette problématique essentielle en proposant une méthodologie qui a fait ses preuves. Toujours dans les généralités, en nous basant sur les fonctions cognitives humaines, les applications industrielles ont pour objectif de :

  • concevoir les applications permettant aux ingénieurs de concevoir ou d’expérimenter certaines propriétés d’un produit pour évaluer sa conception avant sa fabrication réelle. Cela concerne aussi la conception ou la modification des processus industriels, telles que les chaînes de montage pour évaluer l’aménagement des machines, l’accessibilité, l’ergonomie des postes de travail, etc. ;

  • apprendre avec le but d’immerger un apprenant dans un environnement artificiel visant à lui enseigner le fonctionnement d’un procédé industriel complexe, d’une opération de maintenance, etc. ;

  • comprendre. Il s’agit de faciliter la compréhension d’événements, de phénomènes ou d’un ensemble de données complexes, en immergeant l’utilisateur et en lui permettant d’agir sur ces données dans un environnement virtuel les représentant. Pour les industries chimiques et pétrolières, la simulation visuelle de processus complexes n’est pas forcément suffisante et il faut permettre à l’usager de pourvoir interagir sur les données (l’essence même de la réalité virtuelle). En exemple classique et exploité depuis vingt ans, la simulation, via un CAVE (Cave Automatic Virtual Environment : ensemble de 3 à 6 grands écrans entourant l’usager) (figure 11), des puits de forage et des couches géologiques, permet aux différents corps de métiers (géologues, sismologues, foreurs…) d’interagir avec leur modèle du sous-sol pour faire les bons choix de forage lors de revue de projets.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-te5965


Cet article fait partie de l’offre

Industrie du futur

(104 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

7. Conclusion

Deux grandes révolutions ont déjà eu lieu dans les industries manufacturières : la généralisation du numérique d'une part et l'organisation du développement en mode projet d'autre part. Aujourd'hui, chez la plupart de ces industriels, tout le cycle de vie du produit est numérique : sketchs des stylistes, définitions CAO des pièces et assemblages, maquette numérique, usine numérique, simulation numérique des phénomènes physiques et des procédés et processus de fabrication, gammes de service après-vente, documents commerciaux. Quant au développement en mode projet, il est décrit dans des référentiels, balisé par des jalons, chronométré. Il n'est bien sûr pas figé et s'adapte en permanence, poussé par l'amont des bureaux d'étude dans certaines sociétés, tiré par l'aval industriel dans d'autres. Mais un certain nombre d'étapes restent incontournables qui imposent le rythme du schéma de développement : la définition de la cible du produit, la convergence entre le style, la technique et les prestations attendues par le client, la réalisation des outillages de fabrication et des lignes de production, les essais réglementaires et les tests consuméristes, la montée en puissance des usines. L'ensemble des métiers concernés par le développement, la fabrication, la commercialisation, l'après-vente constituent l'équipe projet. La réalité virtuelle ne va donc pas introduire une nouvelle révolution du processus de développement industriel mais elle va lui donner un nouvel élan :

  • réduction du délai de certaines phases essentielles du développement ;

  • implication de l'ensemble des acteurs du projet dès les phases préliminaires, celles où les décisions sont lourdes de conséquence en termes de qualité, respect des délais et des coûts et où il est indispensable que toutes les voix s'expriment ;

  • limitation du nombre de maquettes physiques dans un contexte de diversification des produits et de leurs variantes ;

  • illustration à risque minimal d'hypothèses innovantes ou en rupture.

Son déploiement devra être accompagné, comme toute nouvelle méthode de travail d'équipes pluridisciplinaires, par la mise en place des codes et des protocoles qui en garantiront la crédibilité, l'objectif étant d'exploiter à fond son potentiel sans pour autant chercher à dépasser la limite de ce qu'elle est en mesure...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

TEST DE VALIDATION ET CERTIFICATION CerT.I. :

Cet article vous permet de préparer une certification CerT.I.

Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.

Obtenez CerT.I., la certification
de Techniques de l’Ingénieur !
Acheter le module

Cet article fait partie de l’offre

Industrie du futur

(104 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - FUCHS (P.) -   Les interfaces de la réalité virtuelle, éditeur AJIIMD.  -  ISBN 2-9509954-0-3, 210 pages (1996).

  • (2) - FUCHS (P.) -   Les casques de réalité virtuelle et de jeux vidéo.  -  Presses des Mines, 244 pages, ISBN : 978-2-35671-396-4 (2016).

  • (3) - WEISTROFFER (V.) -   Étude des conditions d’acceptabilité de la Collaboration Homme-Robot en utilisant la Réalité Virtuelle.  -  Thèse de l'École des Mines de ParisTech (2014).

  • (4) - LOURDEAUX (D.) -   Projet V3S coordonné.  -  Heudiasyc, UTC, https://www.hds.utc.fr/~dlourdea/dokuwiki/fr/v3s.

  • (5) - LOURDEAUX (D.) -   Outils logiciels de modélisation de l’activité humaine.  -  Heudiasyc, UTC, https://www.hds.utc.fr/~dlourdea/dokuwiki/fr/humans.

  • ...

1 Annuaire

Association Française de Réalité virtuelle et de réalité augmentée (AFRV)

http://www.af-rv.fr/

HAUT DE PAGE

2 Sites internet

Chaire robotique et réalité virtuelle – PSA Peugeot Citroën et Mines ParisTech

http://chaire-rrv.fr

Travaux de recherche

http://chaire-rrv.fr/axes-de-recherche

Starbreeeze

https://www.starbreeze.com/

Haption

https://www.haption.com

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Industrie du futur

(104 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire

QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE

1/ Quiz d'entraînement

Entraînez vous autant que vous le voulez avec les quiz d'entraînement.

2/ Test de validation

Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.

Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Industrie du futur

(104 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS