Présentation

Article

1 - CONTEXTE

2 - DESCRIPTION DE LA CHAÎNE DE TRAITEMENT

3 - DESCRIPTION DES DONNÉES D’ENTRÉE

4 - ÉTAPE DE SEGMENTATION AVEC U-NET

5 - ÉTAPE DE CLASSIFICATION AVEC UN RÉSEAU CONVOLUTIF SPÉCIALEMENT DÉDIÉ « CT-CASTING-NET »

6 - PERFORMANCES DE L’APPROCHE DE DÉTECTION GLOBALE

7 - DISCUSSION

8 - CONCLUSION

Article de référence | Réf : SF1500 v1

Étape de segmentation avec U-Net
Détection automatique de défauts en tomographie par intelligence artificielle

Auteur(s) : Valérie KAFTANDJIAN, Abdel Rahman DAKAK, Philippe DUVAUCHELLE

Date de publication : 10 sept. 2022

Cet article offert jusqu'au 15/12/2024
Consulter en libre accès

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

La tomographie industrielle à rayons X est reconnue comme une méthode d'inspection efficace des pièces moulées en alliage léger. Cependant, les images contiennent des artefacts qui peuvent être confondus avec des défauts par les algorithmes de segmentation conventionnels. Une approche automatique a donc été développée en trois étapes :

  • segmentation 2D des coupes tomographiques avec un réseau neuronal profond U-Net pour détecter les discontinuités; 
  • classification de ces discontinuités en vrais défauts ou fausses alarmes, à l'aide d'un réseau neuronal convolutif spécialement dédié ; 
  • localisation des défauts validés en 3D.

Le choix de chaque modèle et les résultats d'apprentissage sont discutés, ainsi que les performances en termes de probabilité de détection et de taux de fausses alarmes.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Automatic defect detection in tomographic volumes using artificial intelligence approaches

Industrial X-ray computed tomography has proven its value as a non-destructive method for inspecting light metal castings. However, tomographic volumes are prone to artifacts that can be mistaken for defects by conventional segmentation algorithms. An automatic approach has been developed with a three-step pipeline: (1) 2D segmentation of CT slices with deep neural U-Net network to detect suspicious discontinuities; (2) classification of these discontinuities into true defects or false alarms , using a trained convolutional neural network classifier; (3) localization of the validated defects in 3D.

The choice of each model and training results are discussed, as well as the performances in terms of probability of detection and false alarms rate.

Auteur(s)

  • Valérie KAFTANDJIAN : Professeur des Universités (Laboratoire Vibrations et Acoustique Univ Lyon, INSA Lyon, LVA, EA677)

  • Abdel Rahman DAKAK : Doctorant, (Centre technique des industries de la fonderie (CTIF) et Laboratoire Vibrations et Acoustique, Univ Lyon, INSA Lyon, LVA, EA677)

  • Philippe DUVAUCHELLE : Maître de Conférences, (Laboratoire Vibrations et Acoustique, Univ Lyon, INSA Lyon, LVA, EA677)

INTRODUCTION

Comme la radiographie, la tomographie est basée sur l’atténuation différentielle des rayons X en fonction de la densité de matière et sa composition chimique, mais elle exploite un grand nombre de vues réalisées suivant différents angles par rotation de l’objet observé. Les différentes vues permettent de déterminer l’atténuation de chaque élément de volume appelé « voxel » et ainsi de reconstituer l’objet en trois dimensions. Par rapport à la radiographie, qui produit des images du volume projeté sur le plan du détecteur, la tomographie permet d’examiner la matière par tranches ou coupes fictives. Cela évite d’être gêné par les nombreuses variations d’épaisseurs ou par les projections de parois qui sont caractéristiques de la radiographie, et ainsi la reconnaissance de la nature des discontinuités (ou défauts) présentes est grandement facilitée. La tomographie est ainsi un outil de choix lors de la mise au point de pièces ou en expertise. Grâce à l’accélération des moyens de calcul, la tomographie commence à être utilisée en contrôle de production.

La question de l’interprétation des données devient alors une problématique cruciale. En effet, pour examiner la totalité du volume, il faut faire défiler à l’écran les coupes virtuelles 2D ou utiliser un algorithme permettant une représentation en 3D du volume de l’objet, et interpréter l’ensemble du volume est très lourd à réaliser manuellement. Sur une ligne de production, il est nécessaire de disposer d’un traitement automatique des données afin de détecter les discontinuités (manque de matière ou inclusions). Une telle tâche peut être réalisée avec des traitements de filtrage de bruit et seuillage adaptatif, mais les performances atteintes résultent d’un compromis entre détection des petits défauts, et détection de fausses alarmes, dues en particulier au fait que la tomographie est sujette à des artefacts de reconstruction. L’avènement des réseaux de neurones convolutifs, et le succès obtenu sur des images naturelles par des réseaux profonds, permettent de penser que les performances doivent être bonnes dans une situation de contrôle non destructif telle que la tomographie.

Cet article propose de montrer l’utilité des méthodes de détection automatique de défauts dans des images de tomographie industrielle en utilisant des réseaux de neurones convolutifs. Le domaine d’application visé est la fonderie d’aluminium, mais d’autres domaines sont possibles, sous réserve de définir une base de données adéquate.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Cet article offert jusqu'au 15/12/2024
Consulter en libre accès

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

defects   |   foundry   |   foundry defects   |   tomography   |   detection   |   neuron network   |   deep learning

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-sf1500

CET ARTICLE SE TROUVE ÉGALEMENT DANS :

Accueil Ressources documentaires Technologies de l'information Technologies logicielles Architectures des systèmes Intelligence artificielle Détection automatique de défauts en tomographie par intelligence artificielle Étape de segmentation avec U-Net

Accueil Ressources documentaires Innovation Industrie du futur Industrie du futur : outils numériques Détection automatique de défauts en tomographie par intelligence artificielle Étape de segmentation avec U-Net

Accueil Ressources documentaires Mesures - Analyses Techniques d'analyse Analyses de surface et de matériaux Détection automatique de défauts en tomographie par intelligence artificielle Étape de segmentation avec U-Net


Cet article fait partie de l’offre

Industrie du futur

(104 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

4. Étape de segmentation avec U-Net

4.1 Choix de l’architecture

La segmentation est la première étape de notre chaîne de traitement illustrée en figure 1. Elle s’applique en considérant le volume coupe par coupe de façon à traiter des images 2D. Le choix d’un réseau convolutif de type U-Net a été privilégié pour son aptitude à pouvoir fonctionner avec relativement peu d’images d’entraînement et permettre une segmentation précise. Ce type de réseau de neurones a été développé en 2015 pour la segmentation d’images biomédicales au département d’informatique de l’université de Fribourg en Allemagne et a donné des résultats très performants, au-delà de tous les réseaux équivalents .

Il s’agit d’un réseau entièrement « convolutif » sous forme de « U », qui fait partie de la famille des auto-encodeurs : la partie encodage (à gauche dans la figure 3) consiste à obtenir une représentation « latente » de l’image d’entrée sous forme d’un vecteur de caractéristiques, tandis que la partie décodage permet de reconstruire une image de sortie qui doit ressembler le plus possible à la version binarisée de l’image initiale. Il faut noter que la sortie n’est pas directement binaire mais une image dont chaque voxel représente la probabilité d’appartenir à la classe « discontinuité » si sa valeur est proche de 1, ou bien la classe « arrière-plan » si sa valeur est proche de zéro.

Il faut noter qu’il existe des architectures de réseaux de neurones convolutifs qui fonctionnent directement sur des données 3D comme 3D-U-Net ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Cet article offert jusqu'au 15/12/2024
Consulter en libre accès

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Industrie du futur

(104 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Étape de segmentation avec U-Net
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ASTM International -   ASTM E2422-17, Standard Digital Reference Images for Inspection of Aluminum Castings,  -  ASTM International, West Conshohocken, PA (2017), http://www.astm.org

  • (2) - SUN (W.), BROWN (S.B.), LEACH (R.K.) -   An overview of industrial X-ray computed tomography  -  (2012).

  • (3) - RONNEBERGER (O.), FISCHER (P.), BROX (P.), U-Net -   Convolutional Networks for Biomedical Image Segmentation,  -  Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, LNCS, Vol.9351: 234-241 (2015).

  • (4) - ÇIÇEK (Ö.), ABDULKADIR (A.), LIENKAMP (S.S.), BROX (T.), RONNEBERGER (O.) -   3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation,  -  Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9901 LNCS, pp. 424-432, jun 2016.

  • (5) - MILLETARI (F.), NAVAB (N.), AHMADI (S.A.) -   V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation,  -  Proceedings - 2016 4th International...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Cet article offert jusqu'au 15/12/2024
Consulter en libre accès

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Industrie du futur

(104 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS