Article de référence | Réf : SE4070 v1

Systèmes dynamiques
Analyse des risques des systèmes dynamiques : préliminaires

Auteur(s) : Jean-Pierre SIGNORET

Date de publication : 10 avr. 2005

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Cet article est consacré à la démarche de sûreté de fonctionnement appliqué aux systèmes dynamiques. Il présente des méthodes et des modèles fiabilistes  permettant de conduire des démarches d’analyse systématique, systémique et probabiliste. Ces outils, répartis en trois grandes classes, couvrent les divers types de risques rencontrés. L’étape la plus cruciale dans une étude de sûreté de fonctionnement d’un système est celle de l’identification et de la hiérarchisation des risques.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Jean-Pierre SIGNORET : Maître ès sciences. Ingénieur fiabiliste Total - Ancien Président de European Safety & Reliability Society (ESRA) - Animateur du groupe de travail « Recherche méthodologique » de l’IMdR-SdF

INTRODUCTION

Lnalyse des risques des systèmes dynamiques : choisi pour ne comporter que des mots du langage courant, un tel titre ne devrait générer aucune ambiguïté sur son objet. Cependant, dans le domaine fiabiliste, beaucoup de termes font l’objet d’une certaine dérive sémantique qui brouille les propos à l’insu même des interlocuteurs.

Ainsi nous aurions pu substituer Sûreté de fonctionnement (SdF) à Analyse des risques, mais ce terme restant encore très fortement connoté sécurité, cela n’aurait pas correspondu complètement à l’esprit de cet article où nous nous préoccupons aussi d’aspects économiques comme la disponibilité de production, par exemple. En effet, défini comme une grandeur à deux dimensions (probabilité × conséquences), le risque a l’immense avantage d’appréhender, dans le même concept, des risques de nature complètement différente et, dans cet exposé préliminaire, nous nous efforcerons de montrer comment le corpus de méthodes et d’outils fiabilistes développés ces cinquante dernières années permet de faire face aux divers types de risques rencontrés.

De même, tout système industriel étant peu ou prou « dynamique », l’appellation système dynamique constitue un raccourci pour désigner les méthodes et modèles fiabilistes auxquels nous allons nous intéresser pour représenter le comportement des systèmes étudiés. Les travaux réalisés par l’ingénieur fiabiliste s’inscrivent en effet dans une démarche d’analyse systématique, systémique et probabiliste mettant en œuvre toute une batterie de méthodes et d’outils que l’on peut globalement répartir en trois grandes classes :

  • méthodes de base pour aborder et dégrossir les problèmes ;

  • méthodes statiques pour analyser les systèmes d’un point de vue structurel (topologique) ;

  • méthodes dynamiques pour appréhender les aspects comportementaux.

Cette classification traduit une certaine gradation dans le degré d’expertise nécessaire à la mise en œuvre des méthodes et surtout des outils qui prennent de plus en plus l’allure de boîtes noires dont les limitations échappent souvent à ceux qui les utilisent.

Nota :

Le but de cet article introductif est de discuter rapidement des différentes classes de méthodes et d’outils afin de mettre en lumière leurs rôles respectifs ainsi que quelques-uns des problèmes attachés à leurs limitations, puis de situer plus précisément dans cette démarche générale les méthodes dynamiques qui feront l’objet d’articles spécifiques ultérieurs :

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-se4070


Cet article fait partie de l’offre

Sécurité et gestion des risques

(475 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

5. Systèmes dynamiques

5.1 Introduction

Depuis le début de cet article, nous utilisons le terme « systèmes dynamiques » comme s’il allait de soi. Il devient maintenant nécessaire de préciser un peu plus ce que sous-entend ce vocable dans notre contexte.

Un coup d’oeil sur le dictionnaire donne :

dynamique, « qui considère les choses dans leur mouvement, leur devenir ».

Cela convient bien à notre propos, car nous allons nous préoccuper ici des systèmes industriels dont les états changent au cours du temps en fonction des aléas (défaillances, réparations, reconfigurations, météo...) auxquels ils sont soumis.

À la réflexion, il pourrait être difficile de trouver un système industriel qui ne soit pas dynamique ! Un simple composant « réparable » qui passe alternativement de l’état de marche à celui de réparation est indubitablement un système dynamique. Et même, à la limite, un composant non réparable qui possède tout de même deux états – marche et panne (ou il reste après y être tombé) – est en toute rigueur « dynamique ». En fait, c’est plutôt le type de modélisation mise en œuvre pour obtenir les résultats recherchés qui confère un caractère statique ou dynamique : nous nous intéressons donc plus précisément dans cet article à la modélisation des caractères dynamiques des systèmes industriels.

Il est à noter cependant que, depuis quelques années, est apparue une nouvelle discipline théorique dénommée « fiabilité dynamique » dont le sujet est de combiner dans une modélisation unique à la fois les processus physiques continus et les phénomènes aléatoires. Bien entendu, il y a un lien avec notre propre propos mais il s’agit en quelque sorte de l’étape suivante de ce que nous avons entrepris de décrire ici où nous nous focaliserons sur les systèmes industriels possédant un nombre fini d’états discrets et évoluant au cours du temps entre lesdits états.

HAUT DE PAGE

5.2 Processus stochastique

Un système qui évolue entre divers états de manière aléatoire porte, en mathématique,...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Sécurité et gestion des risques

(475 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Systèmes dynamiques
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - RIDOUX (M.) -   AMDEC – Moyen  -  AG 4 220. Traité l’Entreprise industrielle (2002).

  • (2) - VÉROT (Y.) -   Démarche générale de maîtrise du risque dans les industries de procédé  -  Démarche générale de maîtrise du risque dans les industries de procédé. Traité Sécurité et gestion des risques (2001).

  • (3) - MORTUREUX (Y.) -   Arbres de défaillance, des causes et événements  -  Arbres de défaillance, des causes et d’événement. Traité Sécurité et gestion des risques (2002).

  • (4) - SOIZE (C.) -   Problèmes classiques de dynamiques stochastiques : méthodes d’études  -  A 1 346. Traité Sciences fondamentales (1988).

  • (5) - LADET (P.) -   Réseaux de Petri  -  R 7 252. Traité Informatique industrielle (1989).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Sécurité et gestion des risques

(475 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS