Présentation
EnglishAuteur(s)
-
Pierre BOIRON : Ancien directeur adjoint – Secteur études – Framatome - Ancien DG Sofinel (filiale ingénierie export EDF – AREVA)
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Accident du 11 mars 2011 à la Centrale de Fukushima
La rédaction de cet article a été achevée avant que les leçons sur l'accident aient pu être tirées. Le lecteur voulant s'informer sur les réacteurs accidentés pourra notamment consulter l'article [B 3 130] de 1979 par Alain Guyader (archives) ainsi que les paragraphes 4.8 (Fusion du cœur, confinement à long terme) et 4.9 (Tenue aux séismes) du présent article.
La conception du réacteur à eau ordinaire bouillante (REB) découle de celle du réacteur à eau ordinaire sous pression (REP) développée pour la propulsion navale ; dans sa version civile, pour la production d'électricité, le réacteur n'est plus soumis aux mêmes contraintes de compacité, de résistance aux secousses et de changements d'assiette pouvant perturber la stabilité d'une interface eau-vapeur, s'il y en avait eu dans la cuve.
Libéré de ces contraintes, on estimait pouvoir réaliser un réacteur de puissance moins coûteux et plus performant que le REP en permettant l'ébullition de l'eau dans le cœur du réacteur. Cette direction ouvrait la voie au cycle direct eau-vapeur – « Dual-cycle » du BWR 1 (Boiling Water Reactor) de GE Co (General Electric Company), puis à la suppression des générateurs de vapeur (complète à partir du modèle BWR 2 de GE Co). La recherche fut engagée dès 1945 dans les laboratoires américains d'Oak Ridge (ORNL) et d'Argonne (ANL). Le prototype EBWR (Experimental Boiling Water Reactor) mis en service à Argonne en 1956 a démontré la faisabilité du concept.
La filière du réacteur à eau ordinaire bouillante (BWR aux États-Unis) fut lancée sur le marché mondial dans les années 1960 par GE Co alors que simultanément Westinghouse faisait la promotion de son « Pressurised Water Reactor » (PWR ou REP).
Le REB n'a pas eu tout le succès commercial escompté car, assez vite, apparut un phénomène de fissuration du matériau des boucles de recirculation (corrosion intergranulaire sous tension de l'acier inoxydable austénitique) entraînant des pertes de disponibilité importantes sur les réacteurs en exploitation. En outre, certains producteurs d'électricité ont pu craindre que le cycle direct conduise à une radioactivité élevée au condenseur – ce que l'expérience d'exploitation a démenti.
Alors que GE Co s'effaçait sur le terrain commercial (le parc mondial de REB en service n'est que le tiers de celui des REP), la société allemande AEG qui avait acquis la licence GE Co et la société suédoise ASEA-Atom reprenaient à leur compte la conception du réacteur dans les années 1970. Outre des avancées au plan de la sûreté, comme l'adoption de trois trains de systèmes de sauvegarde, les contributions européennes les plus significatives furent les barres de contrôle à mouvement lent (fine motion control rods) et la suppression des boucles de recirculation externes qui s'étaient montrées défaillantes, les pompes de recirculation de l'eau de refroidissement du cœur étant alors implantées directement dans le fond inférieur de la cuve du réacteur – innovations majeures réunies pour la première fois sur la centrale allemande Gundremmingen B & C (2 × 1 310 MWe) mise en service en 1984 et 1985.
Réalisant l'intérêt des conceptions européennes, GE Co, qui avait obtenu un rapide succès au Japon, révisait à son tour dans les années 1980 la conception de son réacteur. La firme américaine définit un modèle dit « avancé » ou ABWR (Advanced Boiling Water Reactor) incorporant les conceptions européennes. L'ABWR fut développé en coopération avec les Japonais qui ne voulaient pas du dernier modèle de GE Co, le BWR 6, affecté des défauts des modèles antérieurs. Les deux tranches Kashiwasaki 6 et 7 réalisées par le groupement Toshiba-Hitachi-GE Co pour Tokyo Electric Power, mises en service en 1996 et 1997, constituent la tête de filière de la nouvelle série ABWR. Le succès du REB s'est ainsi poursuivi au Japon qui compte aujourd'hui 32 REB en exploitation pour seulement 23 REP.
Les constructeurs présentent aujourd'hui de nouveaux modèles à sûreté améliorée, dits de génération III ou III+ : des modèles évolutifs, comme l'ABWR, maintenant éprouvé au Japon, ou des modèles de conception nouvelle, intégrant des concepts de sûreté passive, comme l'ESBWR de GE, ou le KERENA d'AREVA.
Le lecteur pourra notamment consulter dans le présent traité.
VERSIONS
- Version archivée 1 de janv. 2000 par Pierre CACHERA
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Génie nucléaire
(170 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Sûreté
4.1 Barrières de confinement
Le REB comporte trois barrières de confinement :
-
le gainage du combustible ;
-
l'enveloppe du circuit primaire comprenant la cuve, ses prolongements (enveloppes des mécanismes de commande des barres…) et les canalisations en eau et en vapeur se raccordant à la cuve jusqu'aux vannes d'isolement et clapets anti-retour sur l'eau alimentaire et aux doubles vannes d'isolement sur la vapeur situées aux traversées de l'enceinte de confinement ;
-
l'enceinte de confinement délimitant un volume étanche entourant complètement la cuve et les canalisations de la deuxième barrière jusqu'aux vannes d'isolement.
Sur le REP, les tubes des générateurs de vapeur participent à l'enveloppe du circuit primaire (barrière statique). Sur le REB, la deuxième barrière ne se trouve matérialisée qu'à la fermeture des doubles vannes d'isolement sur la vapeur et des clapets anti-retour sur l'eau alimentaire (la barrière est dite dynamique). La protection de ces vannes est assurée de manière à ce qu'un même missile ne puisse pas endommager les deux vannes d'une même ligne.
HAUT DE PAGE4.2 Enceinte à réduction de pression
GE Co a développé un système de réduction de pression par barbotage dit passif, car il ne nécessite aucune action humaine ni aucune énergie externe pour fonctionner en cas d'accident.
Partant de la partie sèche de l'enceinte où se trouvent les circuits eau et vapeur sous pression, des tubes plongent sous l'eau d'une chambre humide à moitié remplie d'eau dont la température en marche normale est maintenue inférieure à 50 oC.
En cas de rupture d'une canalisation d'eau ou de vapeur, la moitié environ de la vapeur libérée se condense dans la réserve d'environ 4 000 m3 d'eau froide qui agit par son inertie thermique avant de céder progressivement sa chaleur aux échangeurs des circuits de refroidissement. Le produit du volume de l'enceinte par la pression de service est réduit d'un facteur 2 par rapport à celui du REP, d'où un allègement de l'enceinte par rapport à celle du REP, au prix, il est vrai, d'une plus grande complexité des structures.
On profite de cette réserve d'eau interne, disponible en cas d'accident, pour y condenser, également...
Cet article fait partie de l’offre
Génie nucléaire
(170 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Sûreté
BIBLIOGRAPHIE
-
(1) - HEDIN (F.) - Les critères de choix pour la technologie eau légère. - RGN 2009, no 3, mai-juin 2009.
-
(2) - GUIDEZ (J.), CEA - La R du CEA dans le domaine combustible. - RGN 2009, no 3, mai-juin 2009.
-
(3) - CHOHO (T.) et al., AREVA - Les perspectives d'évolution des combustibles. - RGN 2009, no 3, mai-juin 2009.
-
(4) - MASON (M.), ABOU-KHADER - Recent advances in nuclear power. - A review. Progress in Nuclear Energy, vol. 51, Issue 2, p. 225-235, fév. 2009.
-
(5) - TAKASHI SATO et al - Two types of a passive safety containment for a near future BWR with active and passive safety systems. - Nuclear Engineering and Design, vol. 239, Issue 9, p. 1682-1692, sept. 2009.
-
(6) - DE LA ROSA (J.-C.) et al - Review of condensation on the containment structures. - Progress...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Revue Générale Nucléaire
Nuclear Engineering and Design
Progress in Nuclear Energy
Nuclear Engineering International
Nuclear Technology
HAUT DE PAGE
NRC (Nuclear Regulatory Commission) https://www.nrc.gov/about-nrc.html
SFEN http://www.sfen.fr
The World Nuclear Association http://www.world-nuclear.org
General Electric Co
Hitachi http://www.pi.hitachi.co.jp
Toshiba http://www.toshiba.co.jp/nuclearenergy
Asea Brown Boveri (ABB) http://www.abb.com
AREVA http://www.areva.com
General Electric Co http://www.ge-energy.com
International Atomic Energy Commission (IAEA) http://www.iaea.org
Japanese Atomic Energy Commission (JAEC) http://www.aec.go.jp
Tokyo Electric Power Co (TEPCO) http://www.tepco.co.jp
HAUT DE PAGECet article fait partie de l’offre
Génie nucléaire
(170 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive