Présentation

Article

1 - PRINCIPES FONDAMENTAUX DES SYSTÈMES LIQUIDE-VAPEUR

2 - TRANSFERTS DE CHALEUR AU COURS DE L’ÉBULLITION EN CONVECTION LIBRE

3 - ÉBULLITION DES MÉLANGES

4 - ÉBULLITION EN MILIEU CONFINÉ

5 - ÉBULLITION SOUS FAIBLE PRESSION

6 - CONCLUSION

Article de référence | Réf : BE8235 v2

Principes fondamentaux des systèmes liquide-vapeur
Transferts en changement de phase - Ébullition libre. Ébullition en vase

Auteur(s) : Jocelyn BONJOUR, Monique LALLEMAND

Date de publication : 10 janv. 2021

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

L'ébullition libre désigne l'ébullition qui se produit sur une paroi chauffée, au sein d’un fluide par ailleurs immobile en l'absence de sollicitation thermique imposée. Après une introduction sur les principes fondamentaux de la thermodynamique des systèmes diphasiques liquide-vapeur, l’article détaille les mécanismes de transfert de chaleur régissant l’ébullition et les lois de transferts thermiques associées. Il aborde ensuite l’ébullition des mélanges, souvent utilisée industriellement à des fins de séparation des corps. Pour terminer, il évoque les spécificités de l’ébullition en milieu confiné au voisinage de la paroi chauffée et de l'ébullition libre sous faible pression.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Jocelyn BONJOUR : Professeur des universités CETHIL, INSA Lyon, Villeurbanne, France

  • Monique LALLEMAND : Ingénieur INSA Lyon, Docteur-ès-sciences - Ex-Professeur des universités à l’Institut national des sciences appliquées de Lyon

INTRODUCTION

L’ébullition est le processus de transfert thermique d’une paroi chauffée vers un liquide, associé à un changement de phase se traduisant par la formation de bulles de vapeur dans le liquide. L’ébullition libre (ou ébullition en vase, qui se rapproche davantage de son équivalent anglais « pool boiling ») fait référence à l’ébullition dans un liquide immobile en l’absence de sollicitation thermique et se distingue de l’ébullition convective pour laquelle le fluide est mis en mouvement par un organe externe comme une pompe. Le phénomène d’ébullition occupe une grande place dans de nombreux domaines industriels car il permet de dissiper des densités de flux élevées avec des écarts de température entre la paroi et le fluide relativement faibles. Il est ainsi mis en œuvre dans des opérations de refroidissement de systèmes dissipatifs (composants électroniques, moteurs, etc.), dans des échangeurs thermiques (évaporateurs de systèmes frigorifiques, de systèmes de conversion d’énergie thermo-mécanique, etc.), ou encore dans le domaine du génie chimique ou du génie des procédés.

Que les dispositifs techniques, mentionnés précédemment, fassent appel à l’ébullition libre ou à l’ébullition convective, la compréhension des phénomènes fondamentaux (thermodynamique des équilibres de phase, dynamique de croissance de bulles) régissant l’ébullition est essentielle à une bonne maîtrise des transferts thermiques et de leurs couplages avec le comportement hydraulique du volume de liquide (régimes d’ébullition). Cette compréhension constitue la clef pour envisager des conceptions améliorées de ces dispositifs en tirant parti de phénomènes locaux, après un dimensionnement constituant une esquisse basée sur des lois d’échanges thermiques macroscopiques.

En raison d’une recherche de compacités accrues pour limiter les quantités de fluide ou pour répondre aux contraintes imposées par la miniaturisation d’un grand nombre de systèmes qui dissipent des densités de flux sans cesse croissantes (notamment les composants électroniques), les échangeurs diphasiques ont évolué vers des conceptions tirant partie des microtechnologies d’usinage. Les lois macroscopiques établies pour des géométries conventionnelles cessent d’être utilisables car d’autres phénomènes interviennent aux petites échelles.

La mise œuvre de l’ébullition de mélanges de fluides est une pratique courante dans le domaine du génie des procédés, par exemple pour des opérations de distillation. De même, du fait de l’évolution de la nature des fluides utilisés dans les évaporateurs frigorifiques, liée aux problèmes environnementaux, les fluides frigorigènes sont de plus en plus des mélanges non azéotropiques. L’ébullition de mélanges de fluides diffère de l’ébullition des corps purs en raison de la différence de volatilité de chaque espèce ainsi qu’en raison de la diffusion d’une espèce au sein de l’autre. Des outils spécifiques à ces situations ont par conséquent été développés.

Enfin, en raison de son application à des évaporateurs de systèmes de réfrigération par sorption, qui connaissent un regain d’intérêt de par leur empreinte environnementale réduite, la thématique de l’ébullition sous très faible pression (c’est-à-dire à proximité du point triple du fluide) s’est développée au cours des dernières années. De ces conditions thermodynamiques particulières naissent des phénomènes dont l’impact sur la thermohydraulique de l’ébullition est majeur. Au-delà de la nécessité de les prendre en compte pour concevoir des évaporateurs à basse pression, leur étude permet de renforcer la connaissance générale du phénomène d’ébullition que cet article s’efforce de présenter.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-be8235


Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

1. Principes fondamentaux des systèmes liquide-vapeur

1.1 Notions de base de thermodynamique élémentaire

Les transitions de phases ou changements d’état sont connues depuis très longtemps mais, du fait de la complexité des phénomènes physiques mis en jeu, ils font toujours l’objet d’un grand nombre d’études. Lors du changement d’état liquide-vapeur, il apparaît des discontinuités des variables d’état caractérisant chaque phase.

HAUT DE PAGE

1.1.1 Potentiels thermodynamiques

L’équilibre thermodynamique d’un système traduit son état du point de vue mécanique, thermique et chimique. L’état d’une phase est décrit par des variables intensives et extensives la caractérisant (p, T, H, U, etc.). En thermodynamique, on montre qu’une phase est stable si elle correspond à un maximum du potentiel thermodynamique :

  • énergie libre F si les variables sont T et V ;

  • enthalpie libre G si les variables sont p et T.

L’état d’équilibre d’une phase est donné par le critère de stabilité de Gibbs-Duhem :

TdSdUpdV0

Les grandeurs dS, dU et dV sont des variations infinitésimales autour de la position d’équilibre. Il en découle qu’un état est stable pour un minimum des potentiels U à S et V constants, F à T et V constants, H à S et p constants, G à T et p constants ou un maximum d’entropie S à U et V constants. Si ces conditions ne sont plus respectées, l’équilibre est rompu et le système évolue vers un état métastable ou un état instable.

Pour le changement d’état liquide-vapeur, la transition s’accompagne d’une chaleur latente de vaporisation h lv ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Principes fondamentaux des systèmes liquide-vapeur
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - AIT-AMEUR (M.), STUTZ (B.), LALLEMAND (M.) -   Régimes d’instabilités en ébullition naturelle convective.  -  Congrès SHF « Microfluidique », Toulouse (2004).

  • (2) - ARYA (M.), KHANDEKAR (S.), PRATAP (D.), RAMAKRISHNA (S.A.) -   Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions.  -  Heat and Mass Transfer, 52, p. 1725–1737 (2016).

  • (3) - BANKOFF (S.G.) -   Entrapment of gas in the spreading of liquid over a rough surface.  -  AIChE J., 4, p. 24-26 (1958).

  • (4) - BERENSON (P.J.) -   Experiments on pool-boiling heat transfer.  -  J. Heat Transfer, 83(3), p. 351-358 (1961).

  • (5) - BERENSON (P.J.) -   Film boiling heat transfer from a horizontal surface.  -  Int. J. Heat and Mass Transfer, 5, p. 985-999 (1962).

  • (6)...

ANNEXES

  1. 1 Brevets

    1 Brevets

    LIPS Stéphane, BARRIERE Antoine, NARCY Marine, SARTRE Valérie – Heat diffusion device. WO2018127548A1

    HAUT DE PAGE

    Cet article est réservé aux abonnés.
    Il vous reste 93% à découvrir.

    Pour explorer cet article
    Téléchargez l'extrait gratuit

    Vous êtes déjà abonné ?Connectez-vous !


    L'expertise technique et scientifique de référence

    La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
    + de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
    De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

    Cet article fait partie de l’offre

    Physique énergétique

    (73 articles en ce moment)

    Cette offre vous donne accès à :

    Une base complète d’articles

    Actualisée et enrichie d’articles validés par nos comités scientifiques

    Des services

    Un ensemble d'outils exclusifs en complément des ressources

    Un Parcours Pratique

    Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

    Doc & Quiz

    Des articles interactifs avec des quiz, pour une lecture constructive

    ABONNEZ-VOUS