Présentation
EnglishRÉSUMÉ
La convection thermique est le transfert de chaleur dans les fluides en mouvement. Pour être plus précis, ce phénomène est la conjonction de deux mécanismes physiques, la diffusion moléculaire et l’advection. Cet article traite des aspects physiques de la convection en abordant successivement les conditions aux parois, les critères de similitude en convection forcée, naturelle et mixte, l’utilisation des principales grandeurs extensives (masse, quantité de mouvement, énergie). Pour terminer, il s’intéresse aux fluides dont la diffusivité thermique est très grande devant la viscosité cinématique.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jacques PADET : Professeur à l’Université de Reims
INTRODUCTION
Le transfert de chaleur dans les fluides en mouvement est appelé convection thermique . Dans un milieu matériel rigide, le phénomène se réduit à la conduction thermique, mais les fluides ne sont pas des milieux rigides, et sont très rarement immobiles car des efforts de faible intensité suffisent à les mettre en mouvement.
La convection thermique est donc la conjugaison de deux mécanismes physiques : la diffusion moléculaire (conduction thermique) et l’advection (entraînement par le mouvement du fluide). Des lois analogues régissent la convection massique , due à des gradients de concentration dans un mélange.
Dans ce domaine, les besoins de l’ingénieur concernent principalement le calcul des flux de chaleur (ou de masse) sur les parois qui délimitent les domaines fluides, et la connaissance des champs de température (car on doit souvent respecter des températures limites pour les matériaux, et parfois aussi pour les fluides de refroidissement).
Cet article porte sur la présentation des aspects physiques de la convection : couplage avec la conduction, bilans des principales grandeurs extensives (masse, quantité de mouvement, énergie), distinction entre convection forcée, naturelle et mixte (en régime laminaire ou turbulent), conditions aux parois.
La multiplicité des paramètres à prendre en compte encourage le recours à la similitude et à des grandeurs sans dimension, qui sont présentées en relation avec la source à laquelle elles sont associées. On insiste particulièrement sur la distinction entre critères de similitude, paramètres de couplage et simples groupements sans dimension, ainsi que sur l’utilisation pratique de ces diverses grandeurs. Un paragraphe est enfin consacré aux fluides dont la diffusivité thermique est très grande devant la viscosité cinématique, tels que les métaux liquides.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Convection dans les fluides à faible nombre de Prandtl
Plusieurs courbes de ce paragraphe sont tirées de l’article de R.P. Stein Liquid Metal Heat Transfer paru dans Advances in Heat Transfer, Volume 3 (Academic Press).
5.1 Généralités
Le nombre de Prandtl, attaché exclusivement aux caractéristiques physiques du fluide, intervient dans tous les transferts thermiques par convection forcée ou naturelle.
L’essentiel des théories de la convection a été développé à une époque où, à part le mercure sans application industrielle et les problèmes de coulée en fonderie, on ne se préoccupait guère des transferts thermiques par les métaux liquides.
Ce qui précède a montré comment la mécanique des fluides a servi de support à toute la théorie de la convection, et même comment, à partir de l’analogie de Reynolds, on pouvait identifier les couches limites dynamique et thermique turbulentes ou trouver des coefficients d’échange en fonction des coefficients de frottement ou du nombre de Reynolds.
En écoulement laminaire et en convection forcée (CF), on est simplement ramené à un problème de conduction pure de corps mobiles ou déformables, dont la loi de déformation est connue précisément par la mécanique des fluides. Le schéma d’ensemble de la convection reste donc relativement simple et unique quel que soit le nombre de Prandtl. En turbulence, il se complique fortement pour les métaux liquides pour deux raisons fondamentales.
• L’analogie entre les transferts de quantité de mouvement perpendiculairement à la direction locale de l’écoulement et les transferts d’énergie thermique suivant le gradient de température n’est plus valable.
• Avec des fluides classiques, dans les expressions des flux de la forme :
avec :
- at :
- diffusivité...
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Convection dans les fluides à faible nombre de Prandtl
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive