Article de référence | Réf : BE8015 v1

Définitions
Analyse exergétique - Définitions

Auteur(s) : Riad BENELMIR, André LALLEMAND, Michel FEIDT

Relu et validé le 03 oct. 2019

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

Auteur(s)

  • Riad BENELMIR : Ph. D. Mechanical Engineering – Thermal Sciences (Georgia Tech - Atlanta) - Professeur à l’Université de Lorraine - Laboratoire LERMAB – Équipe Efficacité Énergétique

  • André LALLEMAND : Ingénieur, docteur ès sciences - Professeur à l’Institut national des sciences appliquées de Lyon

  • Michel FEIDT : Ingénieur, docteur ès sciences - Professeur à l’Université Henri-Poincaré Nancy 1

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Les premier et deuxième principes de la thermodynamique sont des « lois » incontournables dans la résolution des problèmes liés à l’énergétique. Le premier principe stipule l’égalité des diverses formes d’énergie (thermique, mécanique, électrique…) et donne lieu à l’examen des flux d’énergie auxquels sont soumis les divers systèmes, puis à l’écriture du bilan qui doit traduire la conservation de l’énergie. Cependant, on constate que s’il y a égalité quantitative des diverses formes d’énergie, la qualité des diverses formes d’énergie varie d’une forme à l’autre, voire à l’intérieur d’une forme donnée, et varie aussi selon les situations considérées. Ainsi, un mégajoule d’énergie thermique à 1 000 ˚C ne représente pas le même « potentiel » énergétique qu’un mégajoule de la même énergie thermique à 20 ˚C. De même, le potentiel d’utilisation d’un mégajoule d’énergie mécanique apparaît rapidement, pour l’utilisateur qu’est l’ingénieur, différent du potentiel d’utilisation d’un mégajoule d’énergie thermique. En effet, si l’énergie mécanique peut être spontanément transformée en énergie thermique (par « dégradation » par exemple), la transformation inverse, non spontanée, nécessite de procéder selon un schéma très précis.

Ce sont tous ces éléments, liés à la qualité de l’énergie et aux processus de transfert et de transformation de l’énergie qui constituent le deuxième principe de la thermodynamique, considéré aussi comme un principe d’évolution.

La grandeur physique liée à cette évolution est l’entropie dont on observe la création dès que des opérations ont lieu en dehors de l’équilibre strict, c’est-à-dire pour toutes les opérations industrielles qui nécessairement doivent présenter une certaine cinétique pour avoir lieu en un temps fini. Ainsi, plus le déséquilibre est important dans un processus (transfert de chaleur dans un échangeur par exemple) plus la puissance mise en jeu est importante, tous autres paramètres étant égaux par ailleurs. Si cet aspect peut apparaître comme très positif, il y a, on peut s’en douter, une contrepartie : une grande cinétique de transfert se paie par une « dégradation» importante de l’énergie (transformation spontanée et irréversible d’une énergie réputée « noble » en chaleur) et une forte création d’entropie.

Ainsi, depuis fort longtemps, la création d’entropie a servi aux scientifiques pour mesurer la dégradation de l’énergie causée par les irréversibilités des transferts et des transformations énergétiques. Cependant, pour l’ingénieur, habitué à raisonner en termes énergétiques, donc, en joules, mégajoules ou kilowatts.heures, voire en termes de puissance, c’est-à-dire en watts, kilowatts ou mégawatts, cette mesure n’est pas pratique. En effet, l’entropie, ou son évolution dans le temps, se mesure en unité d’énergie, ou de puissance, par kelvin (J · K −1 ; W · K −1). Ce fait constitue au moins l’une des raisons de l’intérêt de l’emploi de la notion d’exergie pour traiter de ces problèmes de dégradation de l’énergie.

Dans cet article, les lois fondamentales de la thermodynamique sont rappelées et l’on présente la notion d’exergie et celle d’anergie, qui est la partie complémentaire permettant de retrouver l’énergie totale. L’exergie correspond à la part maximale d’énergie qui peut être transformée en énergie noble. Toute destruction d’exergie correspond ainsi à de la dégradation d’une quantité correspondante d’énergie. Elle se mesure en quantités énergétiques (joules…) ou de puissance (watts…) et peut alors être comparée directement aux énergies ou aux puissances mises en jeu dans les procédés étudiés. L’ingénieur dispose ainsi d’un moyen de chiffrage pratique de l’importance de la dégradation de l’énergie causée par le procédé industriel qu’il développe ou qu’il conduit.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-be8015


Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

1. Définitions

1.1 État ambiant. État inerte

Le milieu ambiant d’un système donné est un milieu relativement vaste englobant ce système et qui est supposé dans un état d’équilibre thermodynamique parfait, c’est-à-dire tel qu’il ne comprend pas de gradients ou de différences des paramètres intensifs (comme la pression, la température, le potentiel chimique) . Tout autre système extérieur à ce milieu ambiant et qui a un ou plusieurs para-mètres intensifs qui diffèrent de ceux de ce milieu ambiant a le potentiel de produire du travail en relation avec celui-ci. Ainsi, le milieu ambiant d’un système donné est le milieu de référence pour établir le potentiel de production (ou de réception) de travail de ce système. Le milieu ambiant est aussi une source (ou puits) d’énergie interne, cette dernière pouvant être librement soustraite (ou ajoutée) sans qu’il y ait de variation des propriétés intensives de ce milieu.

Dans les applications terrestres, le milieu ambiant est souvent constitué de l’atmosphère, des mers, des océans et/ou de la terre. Un état ambiant d’un système est un état d’équilibre contraint par le milieu ambiant. Dans un état d’équilibre contraint, les conditions d’équilibres thermique et mécanique entre le système et le milieu ambiant sont satisfaites car la température et la pression du système sont égales à celles de ce milieu ; cependant, les substances du système sont retenues par une barrière physique de telle manière qu’il n’y a pas, à l’échelle de temps humaine, d’échange de matière entre le système et le milieu ambiant. Il s’agit donc d’un système fermé. Ainsi, en général, dans un état d’équilibre contraint, il n’y a pas d’équilibre des potentiels chimiques.

Un état inerte d’un système est un état d’équilibre non contraint avec le milieu ambiant, où les conditions d’équilibres thermique, mécanique et chimique sont satisfaites. Sous ces conditions, le système ne peut subir...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Définitions
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - MORAN (M.J.) -   Availability Analysis : A Guide to Efficient Energy Use  -  . Prentice Hall, Inc., Wark K., Thermodynamics, Mc Graw-Hille Book Company, 1983.

  • (2) - KOTAS (T.J.) -   The Exergy Method of Thermal Plant Analysis  -  . Krieger Publishing Company, 1995.

  • (3) - BENELMIR (R.) -   Optimisation thermoéconomique des systèmes et procédés énergétiques  -  . Mémoire de H.D.R., Université Henri- Poincaré Nancy I, 1998.

DANS NOS BASES DOCUMENTAIRES

  • Unités de Mesure SI

  • Formalisme et principe de la thermodynamique

  • Thermodynamique chimique. Définitions et relations fondamentales

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique énergétique

(73 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS