Présentation
En anglaisAuteur(s)
-
Jean-Pierre CLERFEUILLE : Ingénieur de l’École supérieure d’électricité - Électricité de France (EDF) Exploitation du Système Électrique
-
Sylvain VITET : Ingénieur civil des Mines - EDF pôle Industrie division Recherche et Développement
-
Cyril LEBREVELEC : Ingénieur de l’École supérieure d’électricité - EDF pôle Industrie division Recherche et Développement
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Les réseaux électriques font fonctionner en parallèle tous les moyens de production et alimentent simultanément tous les consommateurs. Ce sont des ensembles hautement performants, permettant des économies considérables et des niveaux de qualité importants. Cependant, comme tout système complexe, si l'on ne prend pas différentes précautions, ils peuvent présenter une certaine fragilité.
Pour garantir une qualité de service à leurs clients, les compagnies électriques ont mis au point des règles de planification et d'exploitation de sorte que le réseau électrique soit capable de faire face à chaque instant aux aléas courants, tels que la perte d'un ou plusieurs ouvrages de transport ou de production d'énergie électrique. Ces règles sont calées sur un compromis « coût / risque de puissance coupée » acceptable.
Comme la couverture de tous les aléas, pour autant que cela soit possible, entraînerait des coûts prohibitifs, ces seules règles ne garantissent pas que le réseau électrique soit complètement protégé contre les incidents majeurs. Ces incidents, qui touchent un grand nombre de consommateurs et ce à une échelle régionale ou nationale, sont dus à la conjugaison de phénomènes courants et de facteurs aggravants, comme la défaillance de protections ou d'organes de commande. Ces situations, heureusement rares, vont très au-delà de celles prises en compte pour mettre au point les règles de planification ou d'exploitation. On a cependant pu les déplorer par exemple en France en 1978 et 1987, au Japon en 1987, ou sur la côte ouest des États-Unis en juillet et août 1996.
Les conséquences de tels incidents sont importantes, tant du point de vue de l'économie (l'électricité est une des pierres angulaires du fonctionnement de l'économie), de la sociologie (les sociétés modernes sont très sensibles aux coupures d'énergie), que de la sécurité (process sensibles, clients particuliers comme les hôpitaux...). Ces conséquences sont bien sûr fortement liées à la taille de la zone non alimentée ainsi qu'au temps mis pour alimenter à nouveau cette zone.
En pratique, pour faire face aux incidents majeurs et limiter leurs conséquences, les compagnies électriques adoptent des mesures curatives et installent des automates spécifiques, qui constituent le plan de défense du système électrique. En limitant la propagation de ces incidents et en facilitant la reconnexion rapide des consommateurs des zones hors tension, les plans de défense sont un complément économique indispensable des règles courantes de planification et d'exploitation.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Réseaux électriques et applications
(178 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Modes de fonctionnement du réseau
Un réseau électrique assure l'interconnexion entre tous les moyens de production d'électricité et les clients. Il s'agit d'un ensemble hautement performant qui, s'il est suffisamment développé, permet aux opérateurs de réaliser des économies considérables. Il présente cependant quelques fragilités que nous nous appliquerons à faire ressortir par la suite, pour bien appréhender les enjeux du plan de défense. En effet :
-
dans sa fonction de transport, ses capacités sont limitées par des problèmes de surcharge et de tenue de tension ;
-
dans sa fonction d’interconnexion, il oblige tous les groupes produisant de l’électricité à fonctionner en un rigoureux synchronisme.
1.1 Limites de la fonction transport
Les systèmes électriques restent limités dans leur fonction transport :
-
par le dimensionnement des ouvrages de transport ;
-
par les lois physiques régissant le fonctionnement du réseau (encadré 1) : la tenue de tension dans certaines parties du réseau ne sera pas satisfaisante si ces zones sont trop éloignées, au sens électrique, du reste du réseau.
Une surcharge apparaît sur le réseau quand transite sur un ouvrage de transport plus de courant qu'il ne peut en supporter. Cette limitation est due, pour les lignes aériennes, à l'allongement des conducteurs aériens, suite à leur échauffement par effet Joule, évitant ainsi un rapprochement excessif du sol (cf. article Lignes aériennes. Présentation ). Pour les câbles, la limite est fixée par l'échauffement maximal admissible des isolants.
-
Les ouvrages de transport sont généralement protégés contre les surcharges : une ligne sera déclenchée si elle reste en surcharge pendant un temps déterminé. Le ou les temps admissibles de surcharge ainsi...
Cet article fait partie de l’offre
Réseaux électriques et applications
(178 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Modes de fonctionnement du réseau
BIBLIOGRAPHIE
-
(1) - CHANAL (A.) - Lignes aériennes. - D 4 420 à D 4 430. 2000.
-
(2) - BORNARD (P.), PAVARD (M.) - Réseaux de transport et d’interconnexion de l’énergie électrique. Fonctionnement et réglage. - D 4 090. 1993.
-
(3) - CORROYER (C.), DUVEAU (P.) - Protection des réseaux de transport et de répartition. - D 4 805. 1995.
-
(4) - CARRIVE (P.) - Réseaux de distribution Structure et planification. - D 4 210. 1992.
-
(5) - MESLIER (F.), PERSOZ (H.) - Réseaux de transport et d’interconnexion de l’énergie électrique. Développement et planification - . D 4 070. 1989
-
(6) - GAIN (E.) - Réseaux de distribution. Conception et dimensionnement. - D 4 220. 1993.
- ...
Cet article fait partie de l’offre
Réseaux électriques et applications
(178 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive