Présentation
EnglishRÉSUMÉ
Cet article présente deux activités voisines : la liquéfaction de l'hélium et la réfrigération à l'hélium (aussi appelées liquéfaction/réfrigération). Il a pour but de permettre de comprendre le fonctionnement des machines, tout en présentant les méthodes de conception et de construction. Il aborde la description des cycles de base de liquéfaction/réfrigération, puis les calculs simples des paramètres principaux de ces cycles, sur des exemples. Les cycles particuliers pour l'obtention des très fortes puissances ou des températures inférieures à -268,65 °C sont ensuite décrits et commentés. Quelques rappels technologiques succincts sont faits sur les composants principaux, en insistant sur les aspects spécifiques de l'emploi de ces composants pour la réfrigération/liquéfaction. Finalement, le contrôle de procédé est décrit en s'attachant à l'aspect maintien de l'efficacité selon les régimes de fonctionnement.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Guy GISTAU BAGUER : Ingénieur École Nationale Supérieure des Arts et Métiers ENSAM - Ancien responsable de l'activité liquéfaction/réfrigération hélium à la société Air Liquide - Consultant en cryogénie
INTRODUCTION
Ce dossier fait partie d'une série d'articles sur la cryogénie.
Toute activité cryogénique commence par l'obtention de basses températures.
Les températures supérieures à 80 K (– 193 oC), température approximative d'ébullition de l'azote liquide sont obtenues industriellement à l'occasion de la liquéfaction de gaz naturel (méthane) [J 3 601] et de la séparation des gaz de l'air [J 3 600].
L'hydrogène liquide, dont la température d'ébullition est aux environs de 20 K (– 253 oC), est, pour de bien moindres quantités, liquéfié aussi industriellement [J 3 603].
En revanche, l'hélium, dont la température d'ébullition est environ 4 K (– 269 oC), est un gaz plus rare, plus cher, réservé à des utilisations telles que la supraconductivité nécessitant de très basses températures. La liquéfaction/ réfrigération hélium est, actuellement, une activité industrielle mais sa diffusion est encore relativement restreinte car elle est liée au développement de la supraconductivité. Les deux grands domaines concernés sont :
-
le refroidissement et le maintien en froid à l'hélium des énormes structures cryogéniques des grands accélérateurs et anneaux de stockages de particules pour la recherche en physique ;
-
la liquéfaction de l'hélium sur les zones de production (l'hélium est extrait du gaz naturel [J 3 605] en vue d'effectuer son transport et sa distribution commerciale sous la forme liquide afin d'en réduire le coût).
MOTS-CLÉS
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Froid industriel
(49 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Contrôle de procédé
Il permet d'effectuer précisément et en temps utile les actions de pilotage. L'exploitant peut connaître les valeurs des paramètres de la machine, tracer des courbes de tendance, etc. Les liquéfacteurs ou réfrigérateurs modernes de petite ou moyenne taille sont maintenant toujours pilotés automatiquement par un contrôleur de procédé, généralement intégré au module boîte froide pour les petites machines.
Un gros réfrigérateur de la taille de ceux qui sont installés au CERN est contrôlé par environ 40 boucles de contrôle ! Jetons un coup d'œil sur quelques aspects du contrôle d'un liquéfacteur/réfrigérateur.
7.1 Contrôle des pressions du cycle
Il permet de maintenir les hautes et basses pressions du cycle constantes pendant les différentes phases du fonctionnement. Il est constitué de trois vannes et d'une capacité tampon comme indiqué en figure 43.
La vanne VC maintient la haute pression à une valeur constante, égale à la valeur du point de consigne. Elle est pilotée par une boucle de contrôle qui s'ouvre lorsque la haute pression augmente. Le contrôle de la basse pression est effectué par les vannes VA et VB, qui permettent la mise en relation de la basse ou de la haute pression avec la capacité tampon. Puisque la valeur de la haute pression est constante, la masse de gaz stockée dans les circuits correspondants est constante. Lorsque la basse pression augmente, cela signifie que le cycle contient plus de gaz que nécessaire pour satisfaire la condition de basse pression : la vanne VB s'ouvre. Elle décharge du gaz vers la capacité tampon, ce qui fait décroître la basse pression. À l'inverse, si la basse pression a tendance à diminuer, c'est la vanne VA qui s'ouvre, permettant d'alimenter le cycle à partir de la capacité tampon. Les vannes VA et VB sont actionnées par le même régulateur et montées en opposition.
La pression d'aspiration du compresseur est maintenue à une valeur légèrement supérieure à la valeur de la pression atmosphérique locale afin de limiter les possibles entrées d'air dans le gaz de cycle par différence de pressions.
Il est aussi possible de piloter les vannes de charge VA et décharge VB en fonction de la haute pression et la vanne de by-pass VC en fonction de la basse pression.
Cet article fait partie de l’offre
Froid industriel
(49 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Contrôle de procédé
DANS NOS BASES DOCUMENTAIRES
ANNEXES
CRYODATA http://www.cryodata.com/
Cryodata développe des logiciels permettant le calcul de propriétés thermodynamiques de fluides et de solides, avec un accent mis sur les températures cryogéniques.
GASPAK calcule 28 propriétés thermophysiques de 36 fluides dont les points d'ébullition sont compris entre 4 K et la température ambiante.
HEPAK calcule 33 propriétés thermophysiques de l'hélium 4, y compris les paramètres superfluides de 0,8 à 5 000 K.
ASPEN TECHNOLOGIES https://www.aspentech.com/en
Le logiciel HYSIS, utilisé par les spécialistes, permet de « construire » intuitivement des systèmes constitués des composants classiques : compresseurs, échangeurs, machines de détente, vannes, etc., afin de procéder aux calculs de cycles correspondants. Il permet aussi de simuler des fonctionnements de cycles en régimes transitoires.
HAUT DE PAGE
International Cryogenic Engineering Conference (ICEC) http://mgt-icec.web.cern.ch/mgt-icec/
Conférence...
Cet article fait partie de l’offre
Froid industriel
(49 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive