Présentation
EnglishRÉSUMÉ
Les brumisateurs de fines gouttelettes ont investi les étalages de fruits et de légumes dans les hypermarchés et les terrasses les jours de forte canicule. La brumisation est également utilisée pour le refroidissement rapide des carcasses pour améliorer l'échange thermique de surface et réduire les pertes de poids. Aujourd'hui, la technique de brumisation s'étend aux refroidisseurs atmosphériques secs, batteries de conditionnement d'air et aux condenseurs à air des installations frigorifiques afin d'améliorer leur efficacité énergétique. A la clé, des économies d'énergie et une réduction des émissions de gaz à effet de serre.Dans cet article sont mis en évidence les différents paramètres rentrant en jeu dans le dopage des performances énergétiques liés à l'intégration de ce procédé sur un système frigorifique à condenseur à air.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Mohammed YOUBI-IDRISSI : Responsable de groupe de recherche « Science de la Vie », Air Liquide
-
François TRINQUET : Ingénieur de recherche à IRSTEA
INTRODUCTION
Des statistiques récentes montrent que dans les pays industrialisés, plus de 15 % de l'énergie électrique produite est consacrée à la production de froid (12 %) et au conditionnement d'air (3 %) via des installations frigorifiques à compression mécanique de vapeur (Institut international du froid). Ces chiffres vont incontestablement augmenter du fait de la demande croissante, aussi bien pour la climatisation urbaine que pour le froid dans les moyennes et grandes surfaces commerciales. L'enjeu environnemental qui découle de ces tendances est considérable, plaçant aujourd'hui la recherche de performances énergétiques accrues de tels systèmes, plus que jamais, au cœur des préoccupations sociétales, politiques et économiques.
Une installation frigorifique à compression mécanique de vapeur comporte inévitablement un condenseur au travers duquel la chaleur, puisée à la source froide additionnée à la puissance de compression, est évacuée au milieu extérieur. Se reporter aux articles [BE 9 730] et [BE 9 732] sur les machines frigorifiques et [BE 9 742] sur les échangeurs industriels.
Sur le plan technologique, trois principaux types de condenseurs sont utilisés condenseurs à eau, condenseurs à air et condenseurs à évaporation d'eau, appelés « condenseurs évaporatifs ». Pour des contraintes technologiques et économiques, l'utilisation des condenseurs refroidis à l'eau est restreinte et se limite à quelques applications particulières. Les condenseurs évaporatifs (tours de refroidissement fermées ou hybrides) sont plutôt réservés aux grosses installations et bien qu'ils soient énergétiquement efficaces, la possibilité d'une stagnation d'eau, du développement des panaches, et du biofilm reste omniprésente et toute défaillance dans leur maintenance peut conduire à de graves problèmes de légionellose freinant sérieusement leur développement. À ce titre, la réglementation en vigueur a évolué suite au décret no 2013-2015 du 14 décembre 2014 dans sa rubrique 2921 en créant un régime d'enregistrement (puissance > 3 000 kW) et de déclaration soumis au contrôle périodique (puissance < 3 000 kW) pour les systèmes par refroidissement évaporatif, par dispersion d'eau dans un flux d'air généré par ventilation mécanique ou naturelle.
Les condenseurs à air sont la catégorie la plus répandue pour les petites et les moyennes puissances car l'air est une source naturelle et gratuite. Dimensionnés à partir de la température moyenne maximale ambiante de l'air, ils conduisent aux pressions de condensation les plus élevées. Leurs performances énergétiques dépendent en premier lieu des propriétés thermodynamiques de l'air. Or, ce dernier est un mauvais médium thermique, ce qui impose un débit d'air élevé associé à une surface d'échange et un volume interne importants. Autrement dit, une machine frigorifique munie de ce type de condenseur consomme plus d'énergie et contient plus de masse de frigorigène. De plus, dépendantes de la température ambiante, les performances des installations frigorifiques à condenseur à air sont variables durant l'année. Le risque d'une production frigorifique insuffisante ou d'un dysfonctionnement du système est omniprésent lorsqu'il y a un grand écart entre la température nominale (de conception) et la température ambiante réelle.
Pour améliorer l'efficacité énergétique d'une majorité des systèmes frigorifiques équipés d'un condenseur à air, le recours à la technique de la brumisation, c'est-à-dire l'humidification d'air en entrée par l'ajout de fines gouttelettes d'eau, semble être une solution potentielle.
MOTS-CLÉS
Refroidissement adiabatisue Echanges thermiques Ecoulement diphasique Brumisation Aérocondenseur
VERSIONS
- Version archivée 1 de avr. 2009 par Mohammed YOUBI-IDRISSI
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Froid industriel
(49 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Résultats expérimentaux et du modèle appliqués à un groupe froid
Pour faciliter l'usage du modèle, nous avons développé un logiciel codé en VBA sous Excel (figure 10). L'interface graphique du code de calcul permet d'implémenter les caractéristiques géométriques du condenseur à air ainsi que celles du fluide frigorigène utilisé, en circulation dans le groupe de production de froid.
4.1 Étude de sensibilité
Dans ce paragraphe, il s'agit d'une étude de sensibilité sur une machine frigorifique munie d'un condenseur à air. Les performances énergétiques de ce système sont comparées avec et sans brumisation de son condenseur, pour différents débits d'eau brumisée et dans différentes conditions de température et d'humidité. Les résultats sont présentés sur la figure 11.
La figure 11 montre une série de profils obtenus dans des conditions de température et d'humidité relative d'air avant brumisation de : 25 oC/30 %, 35 oC/30 %. Dans cette figure, sont clairement montrées les conséquences de l'ajout de débit de brume sur ces profils. Comme attendu, la température de condensation diminue au fur et à mesure que le débit de brume augmente. Les températures de refoulement du fluide frigorigène ainsi que celle de l'air suivent les mêmes tendances. Les résultats de cette étude de sensibilité montrent également qu'un seuil de débit de brume existe. Au-delà de ce seuil, l'ajout d'eau n'apporte aucune amélioration, bien au contraire, elle est dans ce cas synonyme d'une perte d'eau inutile : régime de fonctionnement avec excès d'eau. Ce seuil ou le débit optimal d'eau à brumiser dépend des conditions du fonctionnement de la machine frigorifique, notamment du côté air mais aussi de la température d'évaporation à laquelle le froid utile est produit.
HAUT DE PAGE4.2 Validation du modèle
Le modèle développé a été comparé à des essais réalisés sur une pompe à chaleur (PAC) réversible en mode production de froid (mode été) munie d'un condenseur à air ...
Cet article fait partie de l’offre
Froid industriel
(49 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Résultats expérimentaux et du modèle appliqués à un groupe froid
BIBLIOGRAPHIE
-
(1) - COULOMB (D.) - IIR listing of refrigeration research priorities. - Int. J. Refrig., vol. 28(7), p. 973-976 (2005).
-
(2) - LETANG (G.) - La brumisation. - Fiche Memofroid no LXXXXI, Revue générale du froid et du conditionnement d'Air, no 1084, juin 2008.
-
(3) - DA-CONCEIÇAO (Ch.), YOUBI-IDRISSI (M.) - Simulation d'un condenseur à air brumisé : étude paramétrique. - Actes du Congrès français de thermique à Toulouse, SFT, p.[nbsp ]741-746 (2008).
-
(4) - HAJIDAVALLOO (E.), EGHTEDARI (H.) - Performance improvment of air-cooled refrigeration system by using evaporatively cooled air condenser. - International Journal of Refrigeration, p. 982-988 (2010).
-
(5) - MONTAZERI (H.), BLOCKEN (B.), HENSEN (J.L.M.) - Evaporative cooling by water spray systems : CFD simulation, experimental validation and sensitivity analysis. - Building and Environment, p. 1-13 (2014).
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Propriétés de l'air humide en ligne ou téléchargeable http://nte.mines-albi.fr/Thermo/co/uc_PresentationCalculateur.html
http://outils.xpair.com/logiciel/diagramme_air_humide/5.htm
HAUT DE PAGE
Cours en ligne sur l'air humide http://tifi2006.free.fr/logiciels/humidite%20cours.pdf
HAUT DE PAGE
Conférences de la SFT (Société Française de Thermique) http://www.congres-sft.fr
International Spray Conference and exposition mai 2015, Californie USA http://www.asminternational.org/web/itsc-2015
...Cet article fait partie de l’offre
Froid industriel
(49 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive