Présentation

Article

1 - UNE COMPOSITION STRUCTURALE INNOVANTE

  • 1.1 - Définitions et commentaires
  • 1.2 - Couplage morphologico-mécanique
  • 1.3 - Évolutions morphologiques
  • 1.4 - Domaines d’application

2 - NOUVELLES CONFIGURATIONS

  • 2.1 - Grilles « souples »
  • 2.2 - Anneaux et « corde creuse »
  • 2.3 - Grille plane à double nappe pliable
  • 2.4 - Arche de tenségrité

3 - CONTRÔLE ET ADAPTABILITÉ

  • 3.1 - Contrôle dynamique d’une grille de tenségrité
  • 3.2 - Passerelle piétonne

4 - CONCLUSION

5 - GLOSSAIRE

Article de référence | Réf : C2471 v1

Une composition structurale innovante
Systèmes réticulés spatiaux en état de tenségrité - Développements récents

Auteur(s) : René MOTRO

Date de publication : 10 août 2015

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les systèmes réticulés spatiaux en état d'autocontrainte ont une composition structurale caractérisée par l’autocontrainte, des états de sollicitation simples de ses composants, une discontinuité des composants comprimés et un couplage morphologico-mécanique important. Cet article décrit les plus récents développements: nouvelles morphologies pour les cellules, nouvelles réalisations et configurations (grilles souples, arche de tenségrité, cellule pliable/dépliable, anneau de tenségrité). L'aptitude des systèmes au contrôle actif est illustrée par deux études: la première concerne la modification des réponses vibratoires d'une grille spatiale plane à double nappe, la seconde s'inscrit dans le contexte de la conception d'une passerelle piétonnière pliable/dépliable, résultat d'un assemblage d'anneaux de tenségrité.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Reticulated spatial systems in tensegrity state. Recent developments

Self-stressed reticulate space systems have an innovative structural composition, characterized by self-stress, pure solicitation of its components, a discontinuity of the compressed components and strong morphologico-mechanical coupling. This paper is devoted to some of the most recent developments: new morphologies for cells, presentation of recent achievements, new configurations (flexible grids, arch of tensegrity, foldable cells - tensegrity ring). The ability of active control over these systems is illustrated by two recent studies. The first one concerns the modification of vibrational characteristics of a spatial double layer grid. The second is viewed in the context of the design of a foldable pedestrian bridge, the result of an assembly of tensegrity rings and subjected to active control.

Auteur(s)

  • René MOTRO : Professeur Émérite, Président de l’International Association for Shell and Spatial Structures (IASS) - Laboratoire de Mécanique et Génie Civil, UMR CNRS 5508, université de Montpellier (France)

INTRODUCTION

Les systèmes réticulés spatiaux en état de tenségrité appartiennent à la classe des structures légères. Leur composition structurale est associée à un état d’autocontrainte qui nécessite une recherche de forme compatible avec sa réalisation. Elles représentent une généralisation de la « précontrainte » à des structures spatiales. Elles sont caractérisées par un couplage fort entre morphologie et mécanique.

Dans le domaine de la construction, en raison d’une apparente complexité, les applications de ce type de systèmes ne sont pas apparues naturellement aux concepteurs, mais quelques réalisations attestent de leur faisabilité. Elles trouvent leur pertinence dans des applications quelquefois inattendues, comme dans le domaine médical, mais aussi dans celui des systèmes contrôlables. Leur aptitude aux modifications géométriques sans retrait de composants, et à leur déploiement rigidifié sans ajout de composants, est un facteur décisif de progrès dans le domaine des structures pliables dépliables : elles représentent une solution innovante par rapport aux autres modes existants.

Pour répondre aux enjeux associés à leur spécificité, plusieurs développements ont été nécessaires. Ainsi, de nouvelles configurations morphologiques ont été proposées. Il s’agit en particulier de cellules aux géométries irrégulières comportant un nombre élevé de composants : elles se révèlent utiles pour la modélisation du cytosquelette de cellules endothéliales. La définition d’un anneau de tenségrité et l’étude de sa pliabilité sont à l’origine de propositions de passerelles piétonnes déployables ; le principe même de l’assemblage d’anneaux ne se réduit pas à des systèmes horizontaux, et des tours verticales, voire inclinées, peuvent être construites avec des anneaux de tenségrité. D’autres projets sont en cours d’étude pour des morphologies globales à deux et trois dimensions.

L’existence de l’autocontrainte, la possibilité de mise en place de capteurs et d’actuateurs autorisent le contrôle des systèmes de tenségrité, soit pour commander leur déploiement, soit pour modifier leurs caractéristiques mécaniques de façon à répondre à des impératifs fréquentiels. Ces progrès sont possibles en raison d’un développement simultané de logiciels de commande. Ces qualités sont désormais exploitées pleinement dans la conception de robots utilisés, tant pour la conquête spatiale, que pour des emplois terrestres. La conception des systèmes réticulés spatiaux est désormais facilitée par des modèles numériques intégrant le couplage entre morphologie et mécanique, modèles basés sur des procédures telles que la relaxation dynamique : le concepteur peut littéralement modeler en interaction son projet et, par exemple, modifier les courbures d’une arche tout en respectant la possibilité d’existence d’états d’autocontrainte.

En raison de leurs caractéristiques, les systèmes réticulés spatiaux en état de tenségrité ouvrent la voie de systèmes constructifs contrôlables à morphologie évolutive. Ils préfigurent peut-être le génie civil de l’Espace.

Le lecteur trouvera en fin d'article un glossaire de l'ensemble des termes techniques rencontrés ici.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

architecture   |   structures and properties

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-c2471


Cet article fait partie de l’offre

Les superstructures du bâtiment

(117 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

1. Une composition structurale innovante

1.1 Définitions et commentaires

Les systèmes en état de tenségrité sont une sous-classe des systèmes réticulés autocontraints [IN 19].

Leur composition structurale est tout à fait singulière : elle implique la présence de composants simplement comprimés au sein d’un ensemble de composants simplement tendus.

Exemple

La composition de la figure 1 comporte deux composants comprimés, chacun de ceux-ci étant obtenu par l’assemblage de quatre éléments rectilignes. Ces deux composants sont associés par un réseau continu d’éléments tendus (on peut compter dans ce cas seize éléments). Ce système répond à la définition proposée en référence .

L’état de tenségrité est un état d’auto-équilibre stable d’un système comportant un ensemble de composants comprimés à l’intérieur d’un continuum de composants tendus.

L’autocontrainte caractérise l’état mécanique d’un système présentant des contraintes initiales de construction indépendamment de toutes actions extérieures.

Cette définition est celle d’un état, elle peut être applicable à des systèmes autres que les systèmes construits ; par la suite seule la dénomination « systèmes de tenségrité » sera conservée en lieu et place de « systèmes réticulés spatiaux autocontraints en état de tenségrité ».

Le mot autocontrainte se justifie mécaniquement et qualifie alors l’auto-équilibre.

Cette proposition est tout à fait conforme au brevet déposé par Kenneth Snelson ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Les superstructures du bâtiment

(117 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Une composition structurale innovante
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - SNELSON (K.) -   Continuous tension, Discontinuous Compression Structures.  -  U.S. Patent n° 3 169 611 (16 février 1965).

  • (2) - SKELTON (R.E.), OLIVEIRA (M.C. de) -   Tensegrity Systems.  -  Springer (2009).

  • (3) - MOTRO (R.) -   Tenségrité.  -  Lavoisier, 336 pages. ISBN 2-7462-1208-0, chapitre 4 (2005).

  • (4) - LINKWITZ (K.), SHECK (H.J.) -   Einige Bemerkungen von vorgespannten Seilnetzkonstruktionen.  -  Ingenieur-Archiv 40, Springer-Verlag, p. 145-158 (1971).

  • (5) - BARNES (M.R.) -   Applications of dynamic relaxation to the design and analysis of cable, membrane and pneumatic structures.  -  2nd International Conference. on Space Structures, Guildford (1975).

  • (6) - AVERSENG (J.) -   ToyGL.  -  http://transfert.lmgc.univ-montp2.fr/~averseng/JA/ToyGL.html.

  • ...

1 Outils logiciels

HAUT DE PAGE

2 Sites Internet

  • IASS...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Les superstructures du bâtiment

(117 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS