Présentation
EnglishRÉSUMÉ
La modélisation numérique avec la méthode des éléments finis ou des différences finies a pris une place grandissante dans les procédures de justification des ouvrages géotechniques, à la fois pour la vérification des états limites de service et pour celle des états limites ultimes. Cet article dresse un état de l’art des principaux concepts à maîtriser pour justifier un ouvrage sur la base de modélisations numériques. Quatre principaux aspects sont abordés:- la stratégie de modélisation (caractère bi ou tridimensionnel, prise en compte de couplages, choix des conditions aux limites, etc.)- les lois de comportement et les paramètres clés- l’interaction sol-structure- les méthodes d’analyse des résultats et notamment les procédures de réduction des propriétés de cisaillement.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Emmanuel BOURGEOIS : IFSTTAR
-
Sébastien BURLON : IFSTTAR
-
Fahd CUIRA : Terrasol
INTRODUCTION
La modélisation numérique des ouvrages géotechniques, notamment par la méthode des éléments finis ou des différences finies, a connu une utilisation grandissante depuis ces quinze dernières années avec l’augmentation toujours plus rapide de la puissance de calcul et des capacités de mémoire des ordinateurs.
Désormais, des calculs en trois dimensions comprenant plusieurs centaines de milliers de nœuds sont devenus courants. Ils permettent d’avoir accès au champ de déplacements, de déformations, de contraintes, à la fois dans le terrain et dans différents éléments structurels, mais peuvent aussi donner des informations sur le niveau de sécurité notamment avec les procédures de réduction des propriétés de cisaillement.
Néanmoins, s’ils sont mal réalisés, ces calculs peuvent conduire à des interprétations erronées dans le dimensionnement des ouvrages géotechniques, et il est donc plus que jamais nécessaire de connaître et maîtriser les aspects les plus importants d’une modélisation numérique.
Les liens entre les calculs numériques et les procédures de justification des normes de dimensionnement, notamment l’Eurocode 7, sont aussi un aspect important à considérer.
La stratégie de modélisation reste une étape fondamentale de toute modélisation géotechnique. Elle doit conduire au choix entre des calculs en deux ou trois dimensions, en déformation plane ou en axisymétrie, à l’identification des couplages hydrauliques et thermiques à considérer, à la définition de conditions aux limites pertinentes, etc.
Les modèles de comportement constituent un autre point essentiel de toute modélisation numérique et l’ingénieur en charge des calculs doit bien comprendre comment ils peuvent affecter les résultats qu’il aura à analyser. Les effets des différents paramètres ne peuvent être maîtrisés que si leurs rôles au cours du calcul sont précisément identifiés.
L’interaction sol-structure est aussi un point essentiel de toute modélisation numérique. Deux aspects sont à prendre en considération : l’élément structurel en tant que tel et sa modélisation sous forme de barre, de poutre ou de coque, etc. et les éléments d’interface qui lient ces éléments structurels aux éléments volumiques modélisant le terrain en place.
D’autres techniques plus récentes comme les macroéléments, deviennent une alternative intéressante dans certains cas.
Enfin, l’analyse des résultats est une phase de la modélisation numérique à ne pas négliger. La vérification de la bonne convergence des calculs est une première étape et doit être poursuivie par l’analyse des déplacements, des déformations et des contraintes.
Les procédures de réduction des propriétés de cisaillement sont désormais devenues un outil courant pour évaluer un coefficient de sécurité relatif à la mobilisation de la résistance du terrain. Mais il n’en demeure pas moins que les résultats obtenus à partir de ces procédures doivent être analysés finement, notamment dans le cas d’interaction entre des éléments volumiques et des éléments structurels.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Construction et travaux publics > Mécanique des sols et géotechnique > Modèle géotechnique de calcul > Modélisation numérique des ouvrages géotechniques > Lois de comportement
Cet article fait partie de l’offre
Droit et organisation générale de la construction
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Lois de comportement
Le choix de la loi de comportement est une étape essentielle d’une modélisation numérique et il est fondamental, afin d’analyser efficacement les résultats obtenus, de bien appréhender les différentes complexités mises en jeu.
Une loi de comportement est un modèle conceptuel qui lie des déformations à des contraintes en mettant en jeu deux concepts essentiels, l’élasticité et la plasticité.
Ces deux concepts vont être décrits par la suite.
-
Dans le domaine élastique
Les incréments de contraintes sont liés aux incréments de déformations de manière « proportionnelle » par différents paramètres caractérisant le comportement du matériau étudié : le module d’Young et le coefficient de Poisson en général.
Néanmoins, différents niveaux de complexité peuvent être considérés et vont être détaillés : l’élasticité non linéaire, l’anisotropie, etc.
-
Dans le domaine plastique
Les incréments de contraintes sont liés aux incréments de déformations par des relations non linéaires mettant en jeu différents éléments :
-
une surface de charge ;
-
une loi d’écrouissage qui décrit l’évolution de cette surface ;
-
une règle d’écoulement qui intervient dans le calcul des déformations plastiques.
-
3.1 Élasticité
Différentes lois de comportement élastiques peuvent être employées selon les concepts mis en jeu. On détaille ici les cas de :
Cet article fait partie de l’offre
Droit et organisation générale de la construction
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Lois de comportement
BIBLIOGRAPHIE
-
(1) - PANET (M.) - Le calcul des tunnels par la méthode convergence-confinement, - Presse de l’École Nationale des Ponts et Chaussées (1995).
-
(2) - MESTAT (P.) - Lois de comportement des géomatériaux et modélisation par la méthode des éléments finis, - Études et recherches des laboratoires des ponts et chaussées, série géotechnique, GT52, 193 pages (1993).
-
(3) - BURLON (S.) - Modélisation numérique des mouvements du sol induits par des excavations et des injections de compensation, - thèse de l’université Lille 1 (2007).
-
(4) - GOURVENEC (S.M.), POWRIE (W.) - Three-dimensional finite-element analysis of diaphragm wall installation, - Géotechnique, 49 (6), pp. 801-823 (1999).
-
(5) - LEMAÎTRE (J.), CHABOCHE (J.L.) - Mécanique des Matériaux Solides, - Dunod (2009).
-
...
Cet article fait partie de l’offre
Droit et organisation générale de la construction
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive