Présentation

Article

1 - PLACE DE LA MODÉLISATION NUMÉRIQUE DANS LE CALCUL GÉOTECHNIQUE

2 - STRATÉGIE DE MODÉLISATION

  • 2.1 - Objectifs du calcul
  • 2.2 - Choix du type d’analyse
  • 2.3 - Cadre de modélisation 2D/3D
  • 2.4 - Calculs mécaniques
  • 2.5 - Prise en compte du phasage
  • 2.6 - Prise en compte des couplages hydrauliques et thermiques
  • 2.7 - Effets différés / fluage
  • 2.8 - Synthèse

3 - LOIS DE COMPORTEMENT

4 - INTERACTION SOL-STRUCTURE

5 - APPLICATION AU DIMENSIONNEMENT DES OUVRAGES

6 - CONCLUSIONS ET PERSPECTIVES

Article de référence | Réf : C258 v1

Interaction sol-structure
Modélisation numérique des ouvrages géotechniques

Auteur(s) : Emmanuel BOURGEOIS, Sébastien BURLON, Fahd CUIRA

Relu et validé le 20 juil. 2020

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

La modélisation numérique avec la méthode des éléments finis ou des différences finies a pris une place grandissante dans les procédures de justification des ouvrages géotechniques, à la fois pour la vérification des états limites de service et pour celle des états limites ultimes. Cet article dresse un état de l’art des principaux concepts à maîtriser pour justifier un ouvrage sur la base de modélisations numériques. Quatre principaux aspects sont abordés:- la stratégie de modélisation (caractère bi ou tridimensionnel, prise en compte de couplages, choix des conditions aux limites, etc.)- les lois de comportement et les paramètres clés- l’interaction sol-structure- les méthodes d’analyse des résultats et notamment les procédures de réduction des propriétés de cisaillement.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

INTRODUCTION

La modélisation numérique des ouvrages géotechniques, notamment par la méthode des éléments finis ou des différences finies, a connu une utilisation grandissante depuis ces quinze dernières années avec l’augmentation toujours plus rapide de la puissance de calcul et des capacités de mémoire des ordinateurs.

Désormais, des calculs en trois dimensions comprenant plusieurs centaines de milliers de nœuds sont devenus courants. Ils permettent d’avoir accès au champ de déplacements, de déformations, de contraintes, à la fois dans le terrain et dans différents éléments structurels, mais peuvent aussi donner des informations sur le niveau de sécurité notamment avec les procédures de réduction des propriétés de cisaillement.

Néanmoins, s’ils sont mal réalisés, ces calculs peuvent conduire à des interprétations erronées dans le dimensionnement des ouvrages géotechniques, et il est donc plus que jamais nécessaire de connaître et maîtriser les aspects les plus importants d’une modélisation numérique.

Les liens entre les calculs numériques et les procédures de justification des normes de dimensionnement, notamment l’Eurocode 7, sont aussi un aspect important à considérer.

La stratégie de modélisation reste une étape fondamentale de toute modélisation géotechnique. Elle doit conduire au choix entre des calculs en deux ou trois dimensions, en déformation plane ou en axisymétrie, à l’identification des couplages hydrauliques et thermiques à considérer, à la définition de conditions aux limites pertinentes, etc.

Les modèles de comportement constituent un autre point essentiel de toute modélisation numérique et l’ingénieur en charge des calculs doit bien comprendre comment ils peuvent affecter les résultats qu’il aura à analyser. Les effets des différents paramètres ne peuvent être maîtrisés que si leurs rôles au cours du calcul sont précisément identifiés.

L’interaction sol-structure est aussi un point essentiel de toute modélisation numérique. Deux aspects sont à prendre en considération : l’élément structurel en tant que tel et sa modélisation sous forme de barre, de poutre ou de coque, etc. et les éléments d’interface qui lient ces éléments structurels aux éléments volumiques modélisant le terrain en place.

D’autres techniques plus récentes comme les macroéléments, deviennent une alternative intéressante dans certains cas.

Enfin, l’analyse des résultats est une phase de la modélisation numérique à ne pas négliger. La vérification de la bonne convergence des calculs est une première étape et doit être poursuivie par l’analyse des déplacements, des déformations et des contraintes.

Les procédures de réduction des propriétés de cisaillement sont désormais devenues un outil courant pour évaluer un coefficient de sécurité relatif à la mobilisation de la résistance du terrain. Mais il n’en demeure pas moins que les résultats obtenus à partir de ces procédures doivent être analysés finement, notamment dans le cas d’interaction entre des éléments volumiques et des éléments structurels.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-c258


Cet article fait partie de l’offre

Droit et organisation générale de la construction

(69 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

4. Interaction sol-structure

4.1 Enjeux

L’un des avantages des modèles numériques réside dans leur capacité à rendre compte des mécanismes d’interaction sol-structure et d’interaction structure-sol-structure.

Théoriquement, ces mécanismes peuvent être abordés de façon directe en construisant un modèle numérique d’ensemble intégrant explicitement la structure et le sol qui la supporte, comme l’illustre l’exemple de la figure 9.

Dans la pratique, en dehors des projets de grande envergure (installations industrielles sensibles, bâtiments exceptionnels, etc.), le modèle numérique « géotechnique » se limite à représenter des ouvrages dits « géotechniques » :

  • fondations superficielles ou profondes ;

  • parois de soutènement ;

  • structure d’un tunnel etc.

La superstructure fait alors l’objet d’un modèle numérique dédié dont l’interaction avec le modèle géotechnique est usuellement gérée moyennant un jeu d’actions et de réactions.

L’intégration des éléments de structure dans le modèle géotechnique pose la question de la façon par laquelle ces éléments peuvent être modélisés.

Il existe en pratique deux possibilités :

  • option 1 : utilisation d’un maillage « volumique », l’emprise géométrique de l’élément de structure est explicitement représentée et celui-ci est modélisé comme un milieu continu tridimensionnel, caractérisé à l’aide de propriétés mécaniques telles que :

    • le module d’Young,

    • le coefficient de Poisson,

    • le critère de plasticité, etc. ;

  • option 2 : utilisation d’un maillage « surfacique » ou « linéique » par recours à des éléments de poutre et de plaques, qui relèvent d’une modélisation mécanique spécifique, et dont le comportement est caractérisé à l’aide de paramètres semi-locaux :

    • rigidité axiale,

    • produit d’inertie,

    • coefficient de Poisson,

    • diagramme d’interaction,...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Droit et organisation générale de la construction

(69 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Interaction sol-structure
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - PANET (M.) -   Le calcul des tunnels par la méthode convergence-confinement,  -  Presse de l’École Nationale des Ponts et Chaussées (1995).

  • (2) - MESTAT (P.) -   Lois de comportement des géomatériaux et modélisation par la méthode des éléments finis,  -  Études et recherches des laboratoires des ponts et chaussées, série géotechnique, GT52, 193 pages (1993).

  • (3) - BURLON (S.) -   Modélisation numérique des mouvements du sol induits par des excavations et des injections de compensation,  -  thèse de l’université Lille 1 (2007).

  • (4) - GOURVENEC (S.M.), POWRIE (W.) -   Three-dimensional finite-element analysis of diaphragm wall installation,  -  Géotechnique, 49 (6), pp. 801-823 (1999).

  • (5) - LEMAÎTRE (J.), CHABOCHE (J.L.) -   Mécanique des Matériaux Solides,  -  Dunod (2009).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Droit et organisation générale de la construction

(69 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS