Présentation
EnglishRÉSUMÉ
La modélisation numérique avec la méthode des éléments finis ou des différences finies a pris une place grandissante dans les procédures de justification des ouvrages géotechniques, à la fois pour la vérification des états limites de service et pour celle des états limites ultimes. Cet article dresse un état de l’art des principaux concepts à maîtriser pour justifier un ouvrage sur la base de modélisations numériques. Quatre principaux aspects sont abordés:- la stratégie de modélisation (caractère bi ou tridimensionnel, prise en compte de couplages, choix des conditions aux limites, etc.)- les lois de comportement et les paramètres clés- l’interaction sol-structure- les méthodes d’analyse des résultats et notamment les procédures de réduction des propriétés de cisaillement.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Emmanuel BOURGEOIS : IFSTTAR
-
Sébastien BURLON : IFSTTAR
-
Fahd CUIRA : Terrasol
INTRODUCTION
La modélisation numérique des ouvrages géotechniques, notamment par la méthode des éléments finis ou des différences finies, a connu une utilisation grandissante depuis ces quinze dernières années avec l’augmentation toujours plus rapide de la puissance de calcul et des capacités de mémoire des ordinateurs.
Désormais, des calculs en trois dimensions comprenant plusieurs centaines de milliers de nœuds sont devenus courants. Ils permettent d’avoir accès au champ de déplacements, de déformations, de contraintes, à la fois dans le terrain et dans différents éléments structurels, mais peuvent aussi donner des informations sur le niveau de sécurité notamment avec les procédures de réduction des propriétés de cisaillement.
Néanmoins, s’ils sont mal réalisés, ces calculs peuvent conduire à des interprétations erronées dans le dimensionnement des ouvrages géotechniques, et il est donc plus que jamais nécessaire de connaître et maîtriser les aspects les plus importants d’une modélisation numérique.
Les liens entre les calculs numériques et les procédures de justification des normes de dimensionnement, notamment l’Eurocode 7, sont aussi un aspect important à considérer.
La stratégie de modélisation reste une étape fondamentale de toute modélisation géotechnique. Elle doit conduire au choix entre des calculs en deux ou trois dimensions, en déformation plane ou en axisymétrie, à l’identification des couplages hydrauliques et thermiques à considérer, à la définition de conditions aux limites pertinentes, etc.
Les modèles de comportement constituent un autre point essentiel de toute modélisation numérique et l’ingénieur en charge des calculs doit bien comprendre comment ils peuvent affecter les résultats qu’il aura à analyser. Les effets des différents paramètres ne peuvent être maîtrisés que si leurs rôles au cours du calcul sont précisément identifiés.
L’interaction sol-structure est aussi un point essentiel de toute modélisation numérique. Deux aspects sont à prendre en considération : l’élément structurel en tant que tel et sa modélisation sous forme de barre, de poutre ou de coque, etc. et les éléments d’interface qui lient ces éléments structurels aux éléments volumiques modélisant le terrain en place.
D’autres techniques plus récentes comme les macroéléments, deviennent une alternative intéressante dans certains cas.
Enfin, l’analyse des résultats est une phase de la modélisation numérique à ne pas négliger. La vérification de la bonne convergence des calculs est une première étape et doit être poursuivie par l’analyse des déplacements, des déformations et des contraintes.
Les procédures de réduction des propriétés de cisaillement sont désormais devenues un outil courant pour évaluer un coefficient de sécurité relatif à la mobilisation de la résistance du terrain. Mais il n’en demeure pas moins que les résultats obtenus à partir de ces procédures doivent être analysés finement, notamment dans le cas d’interaction entre des éléments volumiques et des éléments structurels.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Construction et travaux publics > Mécanique des sols et géotechnique > Modèle géotechnique de calcul > Modélisation numérique des ouvrages géotechniques > Conclusions et perspectives
Cet article fait partie de l’offre
Droit et organisation générale de la construction
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Conclusions et perspectives
Les différents aspects traités dans cet article pour la modélisation des ouvrages géotechniques ont donné un premier aperçu des enjeux auxquels l’ingénieur en charge de calculs numériques est confronté. Tous ces aspects doivent conduire à mettre au point des modélisations fiables permettant de garantir la robustesse et la durabilité des ouvrages construits.
Un aspect fondamental, qui n’a pas été abordé, est celui de la sensibilité de la simulation numérique proposée vis-à-vis de certains paramètres. Il est, à ce titre, très important de vérifier que des variations de ces paramètres ne conduisent pas à invalider certaines conclusions obtenues.
Ces études sont particulièrement nécessaires pour les modèles numériques complexes, que ce soit en termes de géométrie, de lois de comportement, etc.
Dans cette optique, il apparaît fondamental, pour une bonne utilisation des méthodes numériques, que les ingénieurs en charge des calculs aient une réelle maîtrise et compréhension de ce qu’ils font : les résultats obtenus ne valent pas plus que les hypothèses ayant permis de les obtenir. Ces hypothèses concernent les valeurs des propriétés des terrains, les lois de comportement dont il faut connaître les limites d’utilisation, les procédures des algorithmes de calcul, etc.
Il est difficile de prévoir comment la modélisation numérique des ouvrages géotechnique va progresser dans les prochaines années. Il est assez surprenant de constater que la plupart des grands développements réalisés au cours des trente dernières années dans le domaine de la rhéologie des sols n’ait pas trouvé d’application en pratique. Les modèles de comportement utilisés restent relativement simples.
En revanche, la complexité des ouvrages modélisés ne cesse de croître. Là où les ingénieurs auraient réalisé plusieurs calculs il y a quelques années, on observe une tendance à ne plus effectuer qu’un unique calcul global, ce qui rend les résultats de plus en plus difficiles à analyser.
Il ne serait donc pas surprenant dans les années à venir que des logiciels spécifiquement dédiés au dimensionnement d’ouvrages spécifiques voient le jour, en s’appuyant sur des modèles de comportement spécifiques au fonctionnement de chacun de ces ouvrages.
Cet article fait partie de l’offre
Droit et organisation générale de la construction
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusions et perspectives
BIBLIOGRAPHIE
-
(1) - PANET (M.) - Le calcul des tunnels par la méthode convergence-confinement, - Presse de l’École Nationale des Ponts et Chaussées (1995).
-
(2) - MESTAT (P.) - Lois de comportement des géomatériaux et modélisation par la méthode des éléments finis, - Études et recherches des laboratoires des ponts et chaussées, série géotechnique, GT52, 193 pages (1993).
-
(3) - BURLON (S.) - Modélisation numérique des mouvements du sol induits par des excavations et des injections de compensation, - thèse de l’université Lille 1 (2007).
-
(4) - GOURVENEC (S.M.), POWRIE (W.) - Three-dimensional finite-element analysis of diaphragm wall installation, - Géotechnique, 49 (6), pp. 801-823 (1999).
-
(5) - LEMAÎTRE (J.), CHABOCHE (J.L.) - Mécanique des Matériaux Solides, - Dunod (2009).
-
...
Cet article fait partie de l’offre
Droit et organisation générale de la construction
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive