Présentation
EnglishRÉSUMÉ
Les procédés de culture en masse de cellules animales sont de plus en plus fréquemment utilisés dans les industries biotechnologiques et pharmaceutiques. Les capacités de ces cellules à produire des particules virales ou des molécules recombinantes complexes ouvrent des voies attractives pour répondre aux nombreux défis de santé publique. Cependant, la mise en oeuvre industrielle de tels procédés suppose de pouvoir transférer la culture des cellules de l'échelle de la boîte à celle du réacteur sans perte de productivité ni de qualité du produit. Cet article propose de donner des éléments de base permettant au lecteur non averti d'appréhender les spécificités de ces procédés. Il intègre les notions relatives aux cellules et milieux de culture utilisés, ainsi qu'à l'évolution du comportement cellulaire en fonction des conditions environnementales. Il présente des technologies de bioréacteurs et des stratégies de contrôle et conduite de procédés semi-continus et perfusés. Enfin, il introduit des des éléments liés à l'hydrodynamique et aux transferts de matière rencontrés dans ces procédés.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Annie MARC : Directeur de recherche au CNRS - Laboratoire réactions et génie des procédés – UPR CNRS 3349, Nancy-Université
-
Éric OLMOS : Maître de conférences à l'ENSAIA de Nancy - Laboratoire réactions et génie des procédés – UPR CNRS 3349, Nancy-Université
INTRODUCTION
Les procédés de culture en masse de cellules animales ont progressé de façon considérable ces 30 dernières années. Ils sont ainsi devenus essentiels aux industries des biotechnologies pour l'obtention de nombreux produits à application thérapeutique et diagnostique (vaccins viraux, cytokines, facteurs de croissance, anticorps monoclonaux, protéines recombinantes, etc.). Ces produits sont utilisés pour la prévention ou le traitement de maladies telles que le cancer, les infections virales, les déficiences héréditaires et nombre de maladies chroniques. Cette accélération impose d'augmenter les capacités de production. On dénombre ainsi plus d'une quinzaine d'installations utilisant des réacteurs en cuve agitée Inox de l'ordre de 15 000 litres. Des productions plus spécialisées utilisent des systèmes moins volumineux mais plus diversifiés. Un fort engouement est récemment apparu pour des réacteurs à usage unique, comme maillons de la chaîne de production ou pour le criblage de conditions opératoires. Concernant les investissements, du fait des longs délais d'installation et de validation d'une unité industrielle, ceux-ci doivent être anticipés le plus tôt possible, en s'appuyant sur des connaissances amont et sur des outils performants d'aide à la décision.
La faisabilité de la production industrielle d'un bioproduit par des cellules animales passe par le transfert de la culture des cellules à l'échelle du réacteur sans perte des performances de production et de qualité. Le défi consiste à mettre en œuvre des cellules assez fragiles, dans des conditions de stress environnemental, biochimique et physique, tout en conservant leur potentiel de production. Il importe ainsi de développer une approche intégrée et multi-échelle qui prenne en compte les aspects liés aux bioréacteurs, aux caractéristiques cellulaires et à la qualité du produit. Les défis à relever allient la connaissance des processus cellulaires en lien avec le milieu de culture, l'adaptation des cellules aux contraintes des réacteurs, la formulation des milieux de culture, la recherche d'outils d'analyse des cellules et des produits pour améliorer le contrôle en ligne des procédés, la conception de nouveaux réacteurs, la maîtrise des conditions opératoires et l'identification des paramètres clés de l'extrapolation. Il s'agit donc nécessairement d'une approche interdisciplinaire entre les sciences de la vie et le génie des procédés.
Dans ce contexte, cet article se propose de présenter les principales spécificités des procédés de culture de cellules animales. Après avoir exposé les caractéristiques des lignées cellulaires industrielles les plus utilisées, nous évoquerons les défis actuels touchant aux milieux de culture et nous apporterons des données relatives à l'impact des facteurs opératoires sur le comportement cellulaire. Une autre partie s'attachera à la présentation des technologies de réacteurs, classiques où à usage unique, ainsi qu'aux outils de contrôle et de conduite de ces procédés. Enfin, des éléments liés à l'hydrodynamique et aux transferts de matière rencontrés dans ces procédés seront présentés.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Biomédical - Pharma > Technologies pour la santé > Nanotechnologies et biotechnologies pour la santé > Procédés de culture en masse de cellules animales > Hydrodynamique et transfert de matière en cytoculteur
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Bioprocédés et bioproductions > Biotech pour la santé > Procédés de culture en masse de cellules animales > Hydrodynamique et transfert de matière en cytoculteur
Cet article fait partie de l’offre
Médicaments et produits pharmaceutiques
(126 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Hydrodynamique et transfert de matière en cytoculteur
5.1 Hydrodynamique
L'hydrodynamique des cytoculteurs est globalement assimilable à celle de réacteurs agités gaz-liquide mais avec des conditions « douces » d'agitation et d'aération. L'agitation doit assurer une bonne mise en suspension des cellules ou des microporteurs, une homogénéisation de la phase liquide pour limiter les gradients de concentration éventuels, une diminution des temps de mélange et une augmentation des capacités de transfert de matière (O2 et nutriments). Cependant, les cellules animales étant réputées fragiles, la problématique de l'agitation est plus complexe que dans le cas des fermentations microbiennes. La densité et la viscosité de la phase liquide sont proches de celles de l'eau, même en présence des plus fortes concentrations cellulaires actuellement rencontrées. Par contre, du fait de la présence dans le milieu de culture de la protéine d'intérêt ou de tensioactifs, comme le Pluronic F68, il conviendra de corriger la tension de surface. Classiquement, l'agitation est caractérisée par une puissance dissipée volumique macroscopique P/V (W · m–3). En bioréacteur de culture de cellules animales, le régime est le plus souvent turbulent, en particulier pour des volumes supérieurs à 10 L. Dans ce cas, le nombre de puissance de l'agitateur utilisé reste constant, ce qui permet le calcul de la puissance dissipée, sans aération, par la relation suivante :
avec :
- P0 :
- (W) puissance dissipée en l'absence de gaz,
- Np :
- nombre de puissance,
- ρ :
- (kg · m–3) masse volumique,
- N :
- (s–1)...
Cet article fait partie de l’offre
Médicaments et produits pharmaceutiques
(126 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Hydrodynamique et transfert de matière en cytoculteur
BIBLIOGRAPHIE
-
(1) - PETIOT (E.) - Étude et optimisation de procédés de production de vaccins par cultures de cellules animales en bioréacteurs. - Doctorat INPL, Nancy, 6 nov. 2009.
-
(2) - LAMOTTE (D.) - Production et glycosylation de l'interféron-gamma humain par des cellules CHO cultivées en bioréacteurs discontinus et perfusés. - Doctorat INPL, Nancy, 20 juin 1997.
-
(3) - CHEVALOT (I.), VISVIKIS (A.), NABET (P.) et al - Production of a membrane-bound protein, the human gamma-glutamyltransferase, by CHO cells cultivated on microcarriers, in aggregates and in suspension. - Cytotechnology, 16, p. 121-129 (1994).
-
(4) - RODRIGUES (M.E.), COSTA (A.R.), HENRIQUES (M.) et al - Technological progresses in monoclonal antibody production systems. - Biotechnology progress, 26, p. 332-351 (2010).
-
(5) - DEPARIS (V.) - Étude et maîtrise d'éléments clés du procédé de production de l'alpha-1,3fucosyltransférase humaine par le système baculovirus/cellules d'insectes. - Doctorat INPL, Nancy, 29 avr. 2002.
- ...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Étude du LEEM. Bioproduction en 2008, état des lieux et recommandations pour l'attractivité française http://www.leem.org/dossier/101/etude-bioproduction-en-2008-etat-des-lieux-et-recommandations-pour-l-attractivite-1297.htm
HAUT DE PAGE2 Événements (liste non exhaustive)
Congrès de l'ESACT, organisé tous les deux ans en Europe http://www.esact.org/meetings_esact.html
Congrès de l'engineering foundation : cell culture engineering, organisé tous les deux ans principalement aux États-Unis http://www.confabb.com/conferences/28966-cell-culture-engineering-xi
Congrès vaccine technology, engineering conferences international http://www.engconf.org/
HAUT DE PAGECet article fait partie de l’offre
Médicaments et produits pharmaceutiques
(126 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive