Présentation
En anglaisNOTE DE L'ÉDITEUR
Ont contribué à cet article : Marianne AZNAR, Régis AMBLARD, Catherine DEJEAN, Gaëlle ANGELLIER, Vincent FLOQUET et Joël HERAULT. Ce travail a été réalisé dans le cadre du DIU de radiothérapie haute technicité www.diu-radiotherapie.com
RÉSUMÉ
La radiothérapie guidée par l'image (IGRT) constitue l'outil incontournable du radiothérapeute. Les évolutions qui la portent sont présentées dans cet article suivant plusieurs perspectives ; elles allient les problématiques de la complexité de traitement des patients par le médecin radiothérapeute, avec les solutions suggérées par les concepteurs de systèmes de radiothérapie. L'IGRT offre un panel important d'outils adaptés et dédiés aux spécificités des traitements des cancers, pour un contrôle de la dose thérapeutique délivrée de plus en plus précis.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Image Guided Radiotherapy constitutes the major current tool of the radiotherapist. The technical progresses carried out in this field are presented in this article according to several angles: these views combine the complexity of cancer treatment foreseen by the radiotherapist with the technical solutions designed by the radiotherapy systems engineers. IGRT offers a wide range of tools tuned for the various cancer treatments with more precision of the therapeutic control of the dose.
Auteur(s)
-
Richard TRIMAUD : Ingénieur Cyclotron - Centre Antoine Lacassagne, Nice, France
-
Juliette THARIAT : Oncologue radiothérapeute - Centre Lacassagne Cyclotron, Nice, France -
INTRODUCTION
La radiothérapie guidée par l'image (IGRT) est une méthode basée sur l'utilisation de l'imagerie (ionisante ou non) en salle de traitement. L'imagerie est garante de la conformité de la délivrance de l'irradiation telle que planifiée, c'est-à-dire qu'elle assure la précision et l'exactitude de la distribution de dose prévue et parfois réévaluée en cas de nécessité clinique (radiothérapie adaptative qui comprend de facto l'IGRT, ou ART). Elle permet aussi d'ajuster le positionnement du patient, voire de la tumeur, en quelques minutes sans alourdir une séance de traitement.
Il existe une autre définition de l'IGRT, plus large mais moins consensuelle, qui comprend aussi l'imagerie pour le diagnostic tumoral et le contourage des volumes cibles et des organes à risque pour préparer le plan d'irradiation ; elle pourrait s'appeler « radiothérapie basée sur l'image » (IBRT) plutôt que « guidée ».
le contourage est l'acte qui consiste à délimiter, mais aussi à annoter un volume (tumoral ou organe à risque) en radiothérapie. Un autre terme utilisé en radiothérapie est « délinéation ».
Le terme anglais « IGRT » sera utilisé, car il est beaucoup plus usité, même en France, que ne pourrait l'être l'acronyme français.
Les domaines de l'imagerie et de la radiothérapie ont vécu ces dernières vingt années une véritable révolution technologique. En effet, l'imagerie de planification multimodalité, basée sur le scanner et sur une ou plusieurs autres modalités après recalage/fusion, a considérablement amélioré la définition des volumes cibles. De plus et en parallèle, les équipements de radiothérapie se sont enrichis de solutions d'optimisation de la conformation de la dose aux volumes cibles en utilisant un principe de modulation d'intensité appliqué à la radiothérapie conformationnelle (IMRT), ou en utilisant une irradiation stéréotaxique, ou encore une radiothérapie par ions lourds.
le terme « conformationnel » indique le principe selon lequel l'irradiation respecte les volumes définis. Initialement un anglicisme, ce terme est un terme consacré et non substituable en radiothérapie.
Le principe de l'IGRT s'intègre enfin dans un compromis sur le rapport bénéfice-risque intrinsèquement lié à la pratique médicale en routine, en visant à augmenter l'index thérapeutique (diminuer les marges, les toxicités, augmenter les doses, le contrôle local) sans alourdir le traitement inutilement (moyens humains, financiers, irradiation supplémentaire du patient, marqueurs invasifs...). Il est directement lié à un contrôle qualité exigeant pour le suivi des performances de ces équipements de pointe.
Nous tenterons dans cet article de montrer le but de l'IGRT et ses différentes modalités d'application.
Compte tenu de la multiplication des modalités d'irradiation avec développement d'outils technologiques adaptés aux appareils de radiothérapie pour optimiser l'imagerie en cours de traitement, des classifications par principe d'application et par procédé technique sont proposées. Les noms commerciaux des équipements sont parfois utilisés faute de ne pas pouvoir se référer à des équipements génériques.
MOTS-CLÉS
KEYWORDS
state of the art | Safety | quality | health | Radiation therapy
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Stratégies de correction des erreurs de reposition- nement par IGRT
Deux stratégies de correction (online et offline ) sont utilisées pour évaluer la position du patient et la conformité de position des faisceaux ou de distribution de dose.
6.1 Erreurs aléatoires et systématiques (répétées)
Une erreur est systématique si elle se reproduit à l'identique à chaque séance (erreur lors du scanner de planification, lors de la planification ou du transfert des données par exemple). Une erreur est aléatoire lorsque, d'une mesure à l'autre, la valeur obtenue peut être surévaluée ou sous-évaluée par rapport à la valeur réelle ; elle est donc imprévisible.
HAUT DE PAGE6.2 IGRT offline
L'IGRT pratiquée a posteriori, c'est-à-dire offline, permet de ne pas reproduire des erreurs systématiques et ne permet que cela. La non-correction d'erreurs systématiques induit des changements dosimétriques significatifs. Moins contraignante qu'une procédure online car pouvant être réalisée en dehors des heures des traitements, et ne se répercutant pas sur la durée totale de traitement du patient (repositionnement + irradiation), elle ignore cependant un certain nombre d'erreurs aléatoires qui peuvent être corrigées par une IGRT online.
HAUT DE PAGE6.3 IGRT online
Le contrôle de l'imagerie en temps réel, patient sur table en position de traitement, impose une présence médicale au poste (ou une délégation protocolisée et la formation d'un personnel agrémenté) et rallonge le temps de séance de quelques minutes, cette durée variant avec la méthode d'IGRT. Elle nécessite un haut niveau d'intégration de logiciels et matériels d'imagerie avec mouvements de table, etc. L'information est adaptée aux changements et prise en compte dans le processus complet de l'irradiation. Un avantage majeur de l'IGRT online est de corriger aussi des erreurs aléatoires, et sous certaines conditions de diminuer les marges d'incertitude du CTV au PTV.
L'utilisation de fiduciaires dans la prostate serait la méthode la moins sujette aux variations inter-observateurs (subjectivité) et peut être utilisée...
Cet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Stratégies de correction des erreurs de reposition- nement par IGRT
BIBLIOGRAPHIE
-
(1) - UDRESCU (C.) et al - ExacTrac snap verification : a new tool for ensuring quality control for Lung stereotactic body radiation therapy. - Int. J. Radiat. Oncol. Biol. Phys., 85(1), p. e89-94 (2013).
-
(2) - HALG (R.A.) et al - Systematic measurements of whole-body imaging dose distributions in image-guided radiation therapy. - Med. Phys., 39(12), p. 7650-7661 (2012).
-
(3) - KUHR (G.C.L.), SCHLEGEL (W.) - Patient positioning sensor unit (PPSU) for stereotactically guided fractionated radiotherapy. - In ESTRO 17 Annual. Meeting, Edinburgh (1998).
-
(4) - CHEN (Q.S.), WEINHOUS (M.S.), DEIBEL (F.C.), CIEZKI (J.P.), MacKLIS (R.M.) - Fluoroscopic study of tumor motion due to breathing : facilitating precise radiation therapy for lung cancer patients. - Med. Phys., 28, p. 1850-1856 (2001).
-
(5) - SEPPENWOOLDE (Y.), SHIRATO (H.), KITAMURA (K.), SHIMIZU (S.), VAN HERK (M.), LEBESQUE (J.V.), MIYASAKA (K.) - Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. - Int. J. Radiat. Oncol. Biol. Phys., 53, p. 822-834 (2002).
- ...
Cet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive