Présentation
RÉSUMÉ
Le bio-printing est un procédé 3D de dépôt de suspensions cellulaires, de solutions aqueuses ou d’hydrogels, de supports biocompatibles, en limitant les différents stress que peuvent subir les cellules par les procédés de fabrication additive pour atteindre une forme et une fonctionnalité biologique souhaitée dans des tissus ou des organes bio-imprimés. Ce domaine émergent est encore proche de preuves de concept avec pour but ultime la réalisation de tissus et d’organes avec une visée initiale « réparatrice », même si d’autres niches plus prometteuses dans le court terme apparaissent (médecine de précision, toxicologie, cosmétique, etc.). L’article traite de voies de réalisation de milieux adaptés pour la bio-impression avec des verrous conceptuels et techniques, des tendances réalistes en évitant, autant que faire se peut, des promesses insensées.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jean-Claude ANDRÉ : Directeur de recherche au CNRS
INTRODUCTION
Depuis plus de 30 ans, les ingénieurs ont mis au point des procédés dits « de fabrication additive » qui permettent la réalisation d’objets s’appuyant sur un dépôt informatisé – simultané ou non – de matière et d’énergie [André, 2017]. Ce marché est de quelques dizaines de milliards d’€/an avec une croissance de l’ordre de 20 %/an. De nouvelles niches sont explorées et, compte tenu du besoin exprimé ci-dessus (mais pas uniquement), de nouveaux procédés (de bio-impression ou bio-printing) se développent, visant la réalisation par fabrication additive d’éléments biologiques structurés conçus par ordinateur.
Le bio-printing appartient ainsi à la bio-ingénierie, qui intègre les sciences physiques, chimiques, mathématiques, ainsi que les principes d’ingénierie pour étudier la biologie, la médecine, les comportements et la santé : il vise la fabrication d’organes ou de tissus vivants. Relativement aux techniques de fabrication additive classiques, l’impression d’éléments biologiques ajoute un niveau de complexité supplémentaire très important aux procédés parce qu’il est nécessaire de structurer « intelligemment » des matériaux vivants ou non mimant la matrice extracellulaire et de contrôler les distributions spatiales de différents types de cellules ou de biomolécules qui peuvent jouer un rôle sur la différenciation cellulaire, la croissance ou l’apoptose, etc. Il s’agit donc de mettre à disposition des biologistes et des médecins des procédés permettant de déposer des suspensions cellulaires, des solutions aqueuses ou des hydrogels, des supports biocompatibles, en limitant les différents stress que peuvent subir les cellules par les procédés de fabrication additive pour atteindre une fonctionnalité souhaitée. Il s’agit également d’anticiper les effets des processus d’auto-organisation cellulaire résultant d’un dépôt de cellules pour atteindre un objectif médical (téléologie et problème inverse).
Dans les faits, deux cibles s’appuyant sur la bio-impression sont présentées, celle « historique » visant la réalisation d’organes (médecine régénérative), l’autre plus récente concernant une utilisation plus robuste que la première, mais en émergence récente, d’amas cellulaires mimant les organes avec une vision « diagnostic » en médecine personnalisée.
MOTS-CLÉS
VERSIONS
- Version archivée 1 de févr. 2017 par Emmanuel GUÉDON, Laurent MALAQUIN, Jean-Claude ANDRÉ
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Mécanique > Fabrication additive – Impression 3D > Enjeux, procédés et marchés > Bio-printing – De l’organe à la médecine personnalisée, résultats et promesses > Une feuille de route pour le bio-printing ?
Cet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Une feuille de route pour le bio-printing ?
Dans un article récent, Sun et al. ont défini une feuille de route pour le bio-printing. Pour ces auteurs, les applications du bio-printing ont progressé, passant des premiers modèles de planification chirurgicale, des implants inertes et des échafaudages de cellules et de paquets de cellules à des modèles bio-imprimés in vitro pour étudier les fonctions régénératives et physiologiques, le développement de maladies et de pathologies (y compris les cancers) et le dépistage de médicaments à l'aide de modèles cellulaires ou tissulaires in vitro. Ces applications ont stimulé le développement de l'ingénierie tissulaire translationnelle, les traitements personnalisés du cancer et les découvertes de médicaments.
Malgré les progrès réalisés, nombre de défis sont à relever, portant a minima sur :
-
les bio-encres : nouvelles bio-encres aux propriétés multifonctionnelles pour mieux transporter, protéger et faire croître les cellules pendant et après l'impression ;
-
les procédés d'impression : meilleurs procédés d'impression et meilleures imprimantes pour fournir des cellules ayant une grande capacité de survie et une grande précision ;
-
la réticulation : techniques de réticulation et agents de réticulation efficaces et performants pour maintenir l'intégrité structurelle et la stabilité des bio-encres après l'impression (sans détériorer le matériel biologique) ;
-
une approche de bio-impression 3D multicellulaire pour la vascularisation : essentielle, voire incontournable ; une stratégie prometteuse émergerait ...
Cet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Une feuille de route pour le bio-printing ?
BIBLIOGRAPHIE
-
(1) - DZOBO (K.), THOMFORD (N.E.), SENTHEBANE (D.A.), SHIPANGA (H.), ROWE (A.), DANDARA (C.), PILLAY (M.), MOTAUNG (K.S.C.M.) - Advances in Regenerative Medicine and Tissue Engineering : Innovation and Transformation of Medicine. - Stem Cells International, 2495848 (2018).
-
(2) - FERNEY (J.) - Près de 24 000 malades en attente d’une transplantation d’organes. - https://www.la-croix.com/Sciences-et-ethique/Sante/Pres-24-000-malades-attente-dune-transplantation-dorganes-2020-01-14-1201071743 (2020).
-
(3) - HRSA Health Resources & Services Administration - Organ Donation Statistics. - https://www.organdonor.gov/statistics-stories/statistics.html (2020).
-
(4) - DERAKHSHANFAR (S.), MBELECK (R.), XU (K.), ZHANG (X.), ZHONG (W.), XING (M.) - 3D bio-printing for biomedical devices and tissue engineering : A review of recent trends and advances. - Bioactive Materials, 3, p. 144-156 (2018).
-
(5) - GUÉDON (E.), MALAQUIN (L.), ANDRÉ (J.C.) - Bio-printing – État des lieux et perspectives. - Techniques...
Cet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive