Présentation

Article

1 - TENSÉGRITÉ, ROBOTIQUE ET BIOMÉCANIQUE

2 - QUELQUES INFORMATIONS BIOLOGIQUES SUR LE COU DES OISEAUX

3 - ARCHITECTURE MATÉRIELLE

4 - MODÉLISATION

5 - PROTOTYPAGE

6 - IDENTIFICATION DU PROTOTYPE

7 - LOIS DE COMMANDE

  • 7.1 - Commande dynamique dans l’espace articulaire
  • 7.2 - Suractionnement et choix de la tension dans les câbles
  • 7.3 - Trois lois de commande

8 - EXPÉRIMENTATIONS

9 - CONCLUSION ET PERSPECTIVES

10 - GLOSSAIRE

Article de référence | Réf : S7858 v1

Identification du prototype
Robot en tenségrité inspiré du cou de l’oiseau

Auteur(s) : Philippe WENGER, Benjamin FASQUELLE, Anick ABOURACHID, Christine CHEVALLEREAU

Date de publication : 10 janv. 2023

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Doté de performances remarquables, le cou de l’oiseau peut servir de modèle d’inspiration intéressant pour un bras manipulateur innovant. Cet article décrit le fruit d’une collaboration entre roboticiens et biologistes spécialistes du cou des oiseaux. On montre comment, en partant d’analyses morphologiques et fonctionnelles issues de la biologie, on aboutit à un modèle biomécanique suffisamment réaliste mais simplifié pour permettre la simulation et la conception d’un prototype fonctionnel. Ce modèle repose sur l’utilisation de mécanismes de tenségrité empilés et pilotés par des câbles. L’article fournit des éléments de modélisation, conception, identification et commande. Il analyse enfin les résultats expérimentaux effectués sur le prototype.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Philippe WENGER : Directeur de recherche CNRS - Laboratoire des sciences du numérique de Nantes, UMR CNRS 6004, Nantes, France

  • Benjamin FASQUELLE : Docteur ingénieur - Laboratoire des sciences du numérique de Nantes, UMR CNRS 6004, Nantes, France

  • Anick ABOURACHID : Professeure du Muséum national d’histoire naturelle - MECADEV – Mécanismes adaptatifs et évolution, Muséum national d’histoire naturelle, UMR 7179 MNHN – CNRS, Paris, France

  • Christine CHEVALLEREAU : Directrice de recherche CNRS - Laboratoire des sciences du numérique de Nantes, UMR CNRS 6004, Nantes, France

INTRODUCTION

Les robots industriels actuels sont construits à partir d’éléments rigides articulés et actionnés par un ensemble de moteurs et de systèmes de transmission. Cette architecture mécanique leur confère une masse importante qui limite leur dynamique et leur dextérité. De plus, elle rend dangereuses les interactions physiques avec l’environnement. À l’inverse, certains animaux possèdent des organes flexibles aux performances exceptionnelles qui leur permettent d’accomplir un grand nombre de tâches difficiles avec facilité. Le tentacule de la pieuvre ou la trompe de l’éléphant, par exemple, fascinent les roboticiens depuis de nombreuses années. Ces organes, totalement mous car dénués de toute ossature, ont inspiré certains roboticiens et donné naissance à une communauté appelée « soft robotics » (« robotique molle ») , qui vise à concevoir des robots déformables sans partie rigide. Cependant, il est très difficile de mettre en œuvre de telles architectures, tant sur le plan de leur construction que de leur commande. Il existe des organes qui possèdent aussi des performances remarquables mais qui, contrairement aux précédents, ne sont pas totalement mous car constitués d’os ou de vertèbres articulés. C’est le cas par exemple du cou de l’oiseau. L’oiseau utilise son cou comme un bras dextre pour des tâches de la vie quotidienne ou plus spécialisées. Le cou du vautour peut se contorsionner pour pénétrer à l’intérieur de carcasses, tout en exerçant des efforts importants pour en arracher les restes de nourriture. Le perroquet est capable de se suspendre par son bec en utilisant son cou comme une troisième patte pour se déplacer. Enfin, d’autres oiseaux utilisent leur cou comme une catapulte pour attraper des poissons ou pour percer un tronc d’arbre. Ces performances remarquables incitent le roboticien à utiliser le cou de l’oiseau comme modèle d’inspiration pour concevoir un robot innovant. Le cou est construit autour d’une colonne cervicale constituée de vertèbres articulées et mues par un ensemble de muscles et de tendons. En mécanique, il existe des structures qui sont particulièrement bien adaptées à la modélisation de systèmes musculo-squelettiques : il s’agit des tenségrités (voir définition plus loin). Composée de barres rigides, de ressorts et de câbles, une tenségrité peut présenter des mobilités contrôlées ; on parle alors de « mécanisme de tenségrité ».

Cet article développe la démarche scientifique ayant permis d’aboutir à la mise en œuvre d’un prototype de robot inspiré du cou de l’oiseau, et plus particulièrement du cou d’un pic. En partant d’analyses morphologiques et fonctionnelles issues de la biologie, on montre comment on peut élaborer un modèle biomécanique simplifié mais suffisamment réaliste pour permettre la simulation puis la conception d’un prototype fonctionnel. La figure 1 illustre le principe de la démarche. On montre aussi en quoi ce prototype peut aider le biologiste à mieux comprendre certains aspects d’évolution fonctionnelle chez les oiseaux.

L’article s’articule autour des points suivants :

  • rappels sur les tenségrités et liens avec la biomécanique ;

  • biologie du cou de l’oiseau ;

  • mise en œuvre du prototype et modélisation ;

  • mise en œuvre de lois de contrôle ;

  • expérimentations et analyses.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-s7858


Cet article fait partie de l’offre

Robotique

(60 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

6. Identification du prototype

6.1 Problèmes amenant à l’identification

Des premières expériences ont été menées sur une version provisoire du prototype où un seul module était contrôlé à l’aide de deux moteurs. La commande (qui sera développée dans la section 7) utilisait le modèle dynamique construit à partir du modèle CAO des pièces, mais sans prise en compte des frottements ni de l’élasticité des câbles. Malgré un suivi correct des consignes, deux problèmes majeurs ont été remarqués à cette étape.

Le premier problème est que les forces appliquées pendant les expériences étaient très différentes des forces estimées par le modèle dynamique, comme on peut le voir sur la figure 23. Non seulement les amplitudes en jeu sont différentes, mais en plus les courbes ne coïncident pas en forme.

Le second problème concerne l’estimation de α qui est biaisée par l’élasticité des câbles. Pour un seul module actionné par deux moteurs, on peut calculer α ^ à partir du câble gauche seulement, ou du câble droit seulement. Des câbles non déformables impliqueraient que ces deux mesures donnent la même estimation, ce qui n’était pas le cas. Afin de bien mettre en évidence l’élasticité des câbles, nous avons procédé à l’expérience suivante : en boucle ouverte, nous avons augmenté les deux forces appliquées simultanément afin que le module reste en position α = 0°, et nous avons regardé les deux estimations α ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Robotique

(60 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Identification du prototype
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ABOURACHID (A.) et al -   Modeling inter-vertebral articulation: the rotule à doigt mechanical joint (RAD) in birds and mammals.  -  Journal of Anatomy 239.6, p. 1287-1299. DOI: DOI: 10.1111/ joa.13517 (cf. p. 6) (2021).

  • (2) - ARSENAULT (M.), GOSSELIN (C.M.) -   Kinematic, static and dynamic analysis of a planar 2-DOF tensegrity mechanism.  -  Mechanism and Machine Theory 41.9, p. 1072-1089 (cf. p. 5), septembre 2006.

  • (3) - ARSENAULT (M.) -   Développement et analyse de mécanismes de tenségrité.  -  Thèse de doctorat, université Laval (cf. p. 5, 9) (2006).

  • (4) - BARATTA (R.) et al -   Muscular coactivation, The role of the antagonist musculature in maintaining knee stability.  -  The American Journal of Sports Medicine 16.2 (cf. p. 9, 10) (1988).

  • (5) - BOHMER (C.) et al -   Gulper, ripper and scrapper: anatomy of the neck in three species of vultures.  -  Journal of anatomy 236.4, p. 701-723. DOI: DOI: 10.1111/joa.13129 (cf. p. 7, 8) (2020).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Robotique

(60 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS