Présentation
EnglishRÉSUMÉ
Cet article décrit les technologies utilisées dans les robots humanoïdes. Suivant l’application visée, des indications sont données pour aider au choix de la structure mécanique, notamment le squelette, les différents actionneurs, la structure informatique et les capteurs. Deux types d’applications sont considérés : les robots humanoïdes à haute performance destinés à la robotique de service et d’intervention et les robots humanoïdes destinés à valider les modèles de l’être humain. La présentation se base sur les réalisations les plus marquantes du domaine. Un tableau synthétisant les différentes caractéristiques est donné en fin d'article.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Olivier STASSE : Directeur de recherche au CNRS Laboratoire d'analyse et d'architecture des systèmes, CNRS, Toulouse, France
INTRODUCTION
Il existe pour les robots humanoïdes deux grandes classes d'applications. La première vise à construire des systèmes polyvalents et performants capables d'agir dans des environnements humains. Éventuellement, ces robots agiront comme des collaborateurs robotiques, aussi appelés « cobots ». La deuxième classe vise à valider des concepts de recherche sur des modèles biologiques et/ou cognitifs. La division entre ces deux classes n'est pas toujours aisée, l'une profitant généralement des avancées scientifiques ou techniques réalisées dans l'autre. La différence est cependant flagrante lorsque l'on compare un robot comme Schaft conçu pour intervenir dans des environnements sinistrés, et le robot iCub conçu pour valider les modèles d'évolution de la cognition chez les enfants. Dans cet article, des principes spécifiques aux[nbsp ]robots humanoïdes sont présentés pour la conception de la structure mécanique suivant le contexte applicatif. La deuxième partie introduit des considérations liées au choix de la structure informatique permettant le contrôle du robot et l'implémentation d'applications distribuées complexes visant la réalisation de comportements évolués. La troisième partie explore les actionneurs utilisés classiquement et ceux qui ont vu le jour dernièrement en robotique humanoïde suite à diverses avancées techniques. Enfin, un tableau de synthèse récapitule les caractéristiques des principaux robots humanoïdes.
MOTS-CLÉS
Robotique humanoïde Robotique de service Robotique d'intervention Robotique manufacturière Composants des robots humanoïdes
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Génie industriel > Industrie du futur > Industrie du futur : outils technologiques > Technologies des robots humanoïdes > Actionneurs
Accueil > Ressources documentaires > Innovation > Industrie du futur > Industrie du futur : outils technologiques > Technologies des robots humanoïdes > Actionneurs
Cet article fait partie de l’offre
Robotique
(60 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Actionneurs
Les actionneurs des robots humanoïdes doivent répondre aux critères suivants : un rapport élevé entre puissance et masse, la capacité de produire des couples élevés à faible vitesse, un faible encombrement. Cette partie décrit les différentes technologies développées pour les robots humanoïdes.
3.1 Actionneurs utilisant des moteurs à courant continu
Les robots humanoïdes de grande taille comme HRP-2, Johnnie ou HUBO-2 utilisent des actionneurs basés sur des moteurs à courant continu et des réducteurs de vitesse pour transformer la vitesse en couple. Le dimensionnement des moteurs et des rapports de réduction peut s'effectuer en utilisant la méthode décrite dans [BM 8 025]. Les moments angulaires les plus importants prennent place au niveau de la hanche et du genou. Pour cette raison, dans le cadre du robot humanoïde H7, les moteurs les plus puissants se trouvent à ce niveau comme l'indique le tableau 1. L'avantage essentiel des moteurs à courant continu est leur bon compromis entre faible encombrement, vitesse et couple fournis. Afin de placer les moteurs le plus proche possible de l'axe de rotation du segment sur lequel ils sont fixés, différents mécanismes d'entraînement sont utilisés : la courroie d'entraînement est le plus fréquent. Sur la jambe, on peut également trouver un arbre de transmission, des engrenages coniques, ou des engrenages épicycloïdaux. L'inconvénient majeur des approches utilisant des HD est leur modélisation. Les relations mécaniques sont non linéaires, et dépendent énormément des conditions d'utilisation (température extérieure, charge). Il est donc très difficile de pouvoir estimer précisément la force qui s'applique sur l'HD simplement en lisant la boucle de courant. Pour cette raison, le contrôle utilisé dans la majorité des cas, lorsqu'il est possible d'accéder directement au courant, est généralement une commande à grands gains.
HAUT DE PAGE...
Cet article fait partie de l’offre
Robotique
(60 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Actionneurs
BIBLIOGRAPHIE
-
(1) - ALFAYAD (S.) - Robot humanoïde HYDROÏD : actionnement, structure cinématique et stratégie de contrôle. - PhD thesis, Université de Versailles Saint-Quentin en Yvelines (2010).
-
(2) - ALFAYAD (S.), BEN OUEZDOU (F.), NAMOUN (F.), CHENG (G.) - High performance integrated electrohydraulic actuator for hydraulics – Part I : Principle, prototypel design and first experiments. - Sensors and Actuators A : Physical, 169, p. 115-123 (2011).
-
(3) - ALIREZAEI (H.), NAGAKUBO (A.), KUNIYOSHI (Y.) - A highly stretchable tactile distribution sensor for smooth surfaced humanoids. - In IEEE/RAS Int. Conf. on Humanoid Robotics (ICHR) (2007).
-
(4) - ANDO (N.), KURIHARA (S.), BIGGS (G.), SAKAMOTO (T.), NAKAMOTO (H.) - Software deployment infrastructure for component based rt-systems. - Journal of Robotics and Mechatronics, 23(13), p. 350-359 (2011).
-
(5) - ARGENTIERI (S.), PORTELLO (A.), BERNARD (M.), DANÉS (P.), GAS (B.) - The technology of binaural listening. - Chapter binaural systems in robotics,...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
IEEE Technical committee on Humanoid Robotics http://www.ieee-ras.org/humanoid-robotics
Description de Robot Operating System (ROS), site officiel http://www.ros.org/ (page consultée le 13/02/2014)
Site officiel de l'Open Source Robotics Foundation http://www.osrfoundation.org (page consultée le 20/02/2014)
Site officiel de Yarp http://www.yarp.it/latest/
Site officiel de OpenRTM http://www.openrtm.org/
Capteur de force KMSi de la société IPR http://www.iprworldwide.com/en/products/standard-components/force-and- torque-sensors/product-infos.html?tx_ttproducts_pi1[cat]=1462& tx_ttproducts_pi1[backPID]=79_ttproducts_pi1[product]=251& cHash=d25c92ecd764cff1415a7f8b5b6baa7a
HAUT DE PAGE
International Conference on Humanoid Robots, Innorobo
...Cet article fait partie de l’offre
Robotique
(60 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive