Présentation

Article

1 - CONTEXTES D’ÉTUDE

2 - GÉNÉRALITÉS SUR LA CORROSION EN MILIEU AQUEUX

3 - OBJETS ARCHÉOLOGIQUES FERREUX CONSIDÉRÉS COMME ANALOGUES

4 - TECHNIQUES DE CARACTÉRISATION

5 - FACIÈS DE CORROSION À TRÈS LONG TERME

6 - MÉCANISMES DE CORROSION SUR LES ANALOGUES

  • 6.1 - Exemples d’indices
  • 6.2 - Exemple de mécanisme Corrosion dans les sols aérés peu chargés en carbonates et en chlorures

7 - DIFFUSION DANS LES PRODUITS DE CORROSION

8 - ESTIMATION DES VITESSES DE CORROSION

9 - CONCLUSION ET PERSPECTIVES

| Réf : AF6920 v1

Diffusion dans les produits de corrosion
Corrosion des objets archéologiques ferreux

Auteur(s) : Philippe DILLMANN

Date de publication : 10 juil. 2005

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Philippe DILLMANN : Chargé de recherche au CNRS, laboratoire Pierre Süe CEA/CNRS et laboratoire Métallurgies et cultures UMR 5060 CNRS

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Dès le XIXe siècle, des savants et scientifiques se sont intéressés à la corrosion des objets archéologiques. En revanche depuis, cette époque a toujours perduré un hiatus entre les spécialistes de la conservation des objets archéologiques et les corrosionistes universitaires et industriels. Les premiers ont toujours basé leurs études sur une approche descriptive et naturaliste tandis que les seconds, souvent ont été intéressés par la compréhension phénoménologique des mécanismes de corrosion de matériaux liés à des cas industriels précis et des environnements parfois fort éloignés de ceux des objets archéologiques. Ainsi, la corrosion du fer et des autres métaux a été largement et finement étudiée dans un grand nombre d’environnements, mais uniquement sur des périodes très courtes comparées aux durées concernées par les analogues archéologiques. D’autre part, les couches épaisses des produits de corrosion ont été décrites par les restaurateurs/conservateurs de manière parfois assez détaillée, mais souvent avec des moyens analytiques limités, donnant une bonne appréhension des hétérogénéités que peuvent présenter les systèmes de corrosion archéologiques à l’échelle macroscopique, mais peu d’éléments de compréhension des mécanismes à l’échelle du micromètre. Or, il est patent que seule la combinaison raisonnée de ces deux approches peut permettre de cerner un tel système de corrosion, parfois fort complexe.

Ces dernières années, pour les métaux ferreux principalement, mais également pour d’autres types, s’est fait sentir le besoin de tenter une approche plus fine de la corrosion des objets archéologiques, basée sur la compréhension des mécanismes. Ceci a été motivé, dans les milieux de la conservation/restauration, par la recherche d’informations spécifiques, impossibles à obtenir autrement que par cette compréhension. En particulier, la localisation dans les produits de corrosion de l’ancienne surface de l’objet, sur laquelle peuvent être retrouvées des informations archéologiques primordiales fait l’objet de recherches poussées [1]. De plus, la conservation des objets ferreux dans les musées, ou des pièces de ce métal dans les monuments historiques exige de bien connaître les produits de corrosion formés durant les siècles précédents et leur évolution en fonction de celle du milieu. À cette motivation liée exclusivement au domaine du patrimoine, s’est greffée une problématique plus récente, qui a été à l’origine d’avancées significatives ces dernières années dans le domaine de la compréhension de la corrosion des objets archéologiques. En effet, dans des contextes liés à l’ingénierie nucléaire, le stockage et l’entreposage des déchets radioactifs à vie longue deviennent un sujet crucial. Pour ce faire, il est envisagé, en France (loi no 91-1381) et dans d’autres pays, de conditionner ces déchets dans une matrice d’enrobage et une série d’enveloppes constituées de différents matériaux (verre, acier inoxydable, acier non allié). Dans plusieurs de ces concepts de stockage, la dernière enveloppe du colis de déchets est un surconteneur en acier doux dont il est primordial de connaître le comportement en corrosion sur des durées multiséculaires. Suivant les solutions envisagées, différents milieux, dans lesquels la corrosion de ce surconteneur peut avoir lieu, sont à considérer. Pour toutes ces raisons, les recherches sur les objets archéologiques, considérés en tant que tels ou comme analogues, sont nécessaires et sont menées dans différents laboratoires français et internationaux.

Dans le cas des métaux ferreux, la morphologie et l’épaisseur (de l’ordre de quelques centaines, voire quelques milliers de micromètres) des produits de corrosion nécessite une approche un peu différente de celle classiquement utilisée en corrosion.

En effet, les techniques d’analyse de surface ou d’études électrochimiques ne peuvent plus être employées de la même manière que pour l’étude des couches minces, correspondant aux premiers stades de la corrosion. De plus, un des axes principaux de recherche est de saisir le rôle exact joué par ces couches épaisses sur les mécanismes de corrosion et de quelle manière celles-ci peuvent influencer la vitesse d’altération du métal. Cette compréhension, passant par la caractérisation fine des systèmes de corrosion, nécessite soit l’adaptation de techniques existantes, soit la mise en œuvre de techniques particulières. C’est l’ensemble de ces points qui vont être décrits ci-dessous traitant exclusivement la corrosion des alliages ferreux.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af6920


Cet article fait partie de l’offre

Physique Chimie

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

7. Diffusion dans les produits de corrosion

Tant en corrosion atmosphérique que dans les sols et les liants hydrauliques, vue l’épaisseur des couches de produits de corrosion considérés, les résultats des expériences électrochimiques par spectroscopie d’impédance 4.5.3 et la présence d’espèces exogènes à l’interface métal/oxyde (chlore, carbonates...), il apparaît que les phénomènes de transport de ces espèces et notamment l’oxygène sont primordiaux pour la modélisation des mécanismes de corrosion. Au vu des températures considérées, il semble que le principal phénomène à considérer soit la diffusion dans les pores des produits de corrosion.

Deux méthodes complémentaires peuvent être mises en jeu pour son évaluation :

  • l’évaluation de la porosité elle-même (de laquelle on pourra déduire un coefficient de diffusion apparent) ;

  • ou l’utilisation de traceurs qui, à partir de l’étude de la distribution de ces traceurs dans les produits de corrosion, pourront apporter une idée sur les phénomènes de transports.

Les diverses mesures de porosités effectuées à ce jour sur des CPD provenant d’analogues archéologiques corrodés en différents milieux, donnent des résultats relativement homogènes (cf. tableau 3). Deux familles de pores peuvent être distinguées :

  • des pores nanométriques, vraisemblablement causés par les espaces entre les granulats des produits de corrosion ;

  • des pores microscopiques, correspondant aux fissures observées par microscopie sur les coupes transversales. Il est alors possible en considérant de la tortuosité, de corriger le coefficient de diffusion de l’oxygène dans l’eau pour obtenir un coefficient de diffusion apparent, tenant compte de la morphologie de la couche. La difficulté à ce stade réside dans la modélisation de cette morphologie et en particulier...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Diffusion dans les produits de corrosion
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS