Présentation

Article

1 - LA FIBRE ET SON UTILISATION

2 - LES MODES DE PROPAGATION D’UNE FIBRE MONOMODALE

3 - PROPAGATION D’UNE IMPULSION DANS UNE FIBRE MONOMODALE

4 - EFFETS COMBINÉS DES DISTORSIONS LINÉAIRES ET NON LINÉAIRES : LES SOLITONS

5 - DISPERSION MODALE DE POLARISATION

6 - CONCLUSION

| Réf : E7110 v1

La fibre et son utilisation
Fibres optiques pour télécommunications

Auteur(s) : Michel JOINDOT, Irène JOINDOT

Date de publication : 10 mai 1999

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Michel JOINDOT : Ancien élève de l’École polytechnique - Ingénieur en Chef des télécommunications

  • Irène JOINDOT : Ingénieur ISMRA (Institut des sciences de la matière et du rayonnement) (ex. ENSEEC) - Docteur de l’Université de Montpellier, habilitée à diriger les recherches

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Une fibre optique est un guide diélectrique permettant de conduire la lumière sur une grande distance. On se limitera dans cet article aux fibres à symétrie de révolution autour de leur axe, constituées de matériaux isotropes (verres). Notre objectif est de présenter les propriétés fondamentales de ces fibres en vue de leur application aux télécommunications, c’est-à-dire leurs propriétés concernant l’affaiblissement et la déformation subis par les signaux lors de leur propagation.

C’est en 1966 que sera lancée l’idée de transporter sur de grandes distances des signaux optiques sur une fibre, mais il faudra des années pour maîtriser les procédés de fabrication et contrôler la composition des matériaux qui influe de manière décisive sur les pertes. On parviendra alors à obtenir des atténuations assez faibles pour que devienne possible la transmission des signaux sur des distances suffisamment grandes pour présenter un intérêt pratique et rendre la technique optique compétitive. Partie en 1960 de 1 000 dB/km, l’atténuation est descendue à 20 dB/km en 1975, puis 0,2 dB/km en 1984.

Comparée aux autres supports de transmission existants, la fibre optique présente une atténuation faible et quasiment constante sur une énorme plage de fréquences et offre ainsi l’avantage de bandes passantes gigantesques, permettant d’envisager la transmission de débits numériques très importants. Mais la fibre ne se réduit pas à un atténuateur parfait : la variation de l’indice de réfraction en fonction de la longueur d’onde est la cause principale de la dispersion chromatique, qui va entraîner une déformation des signaux transmis. Cet effet linéaire se manifeste d’autant plus que la distance est élevée, et la bande passante des signaux transmis importante. Aussi, tant que les atténuations des fibres ont été suffisamment grandes pour que le signal doive être régénéré avant d’avoir été notablement déformé, la dispersion a-t-elle été négligée. Avec la diminution des pertes et l’apparition de systèmes à très grande capacité, la dispersion chromatique est devenue un effet fondamental.

Les amplificateurs à fibre ont permis d’injecter dans les fibres des puissances importantes et de compenser les pertes de propagation ; la contrepartie en est l’apparition d’effets non linéaires, qui sont aussi une source de dégradation du signal, mais peuvent également être utilisés dans certaines conditions de manière positive pour compenser l’influence de la dispersion chromatique. Dans le cas général, effets linéaires et non linéaires interagissent et ne peuvent donc être isolés et traités séparément.

La fibre optique apparaît donc comme un milieu de propagation complexe, dont l’effet sur un signal ne peut être prédit qu’au moyen de logiciels de simulation : de nombreux laboratoires ont développé de tels outils.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-e7110


Cet article fait partie de l’offre

Optique Photonique

(223 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

1. La fibre et son utilisation

1.1 Description d’une fibre

Dans une fibre idéale, l’indice de réfraction n ne dépend que de la distance r à l’axe. Le graphe () s’appelle le profil d’indice de la fibre. La figure 1 donne quelques exemples de profils d’indice. Schématiquement, en partant de l’extérieur, on rencontre succes-sivement :

  • une couche de protection mécanique en matière plastique ;

  • une gaine optique, zone où () reste constant ;

  • un cœur, au voisinage de l’axe, où () présente un maximum.

Lorsque () est constant dans le cœur, on parle de fibre à saut d’indice. Ce profil idéal simplifie les calculs, mais n’a aucune vertu particulière pour les applications pratiques. C’est un cas limite d’une famille de profils qui a été abondamment étudiée. L’expression générale de l’indice en fonction du rayon est donnée par la relation suivante :

avec :

a
 : 
rayon de cœur
Δ
 : 
diminution relative de l’indice entre l’axe et la gaine
g
 : 
paramètre arbitraire positif caractéristique du profil
nc
 : 
indice de réfraction (maximal) du cœur
ng
 : 
indice de réfraction de la gaine.

Cette famille pseudo-parabolique contient des profils en triangle (= 1), parabolique (= 2) et à saut (= ).

En pratique, les variations d’indice entre le cœur et la gaine sont très faibles (moins de 1 %), l’indice lui-même restant au voisinage de 1,46 pour des verres de base de silice (n dépend de la longueur d’onde λ). Le diamètre du cœur varie d’une centaine de micromètres (fibres multimodales) à moins de 10 µm (fibres monomodales). Il est commode de caractériser...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(223 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
La fibre et son utilisation
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(223 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS