Présentation

Article

1 - CARACTÉRISTIQUES DES MATÉRIAUX DIVISÉS

2 - TERMINOLOGIE

3 - ADSORPTION D’UN GAZ PAR UN SOLIDE

4 - THÉORIES DE L’ADSORPTION

5 - DÉTERMINATION EXPÉRIMENTALE DES ISOTHERMES D’ADSORPTION-DÉSORPTION

6 - ÉVALUATION DES AIRES SPÉCIFIQUES

7 - CARACTÉRISATION DE LA MICROPOROSITÉ

8 - POROSITÉ ET DISTRIBUTION DE TAILLE DES MÉSOPORES

9 - CONCLUSION : NÉCESSITÉ DE MÉTHODES COMPLÉMENTAIRES DE L’ADSORPTION GAZEUSE

| Réf : P1050 v3

Caractéristiques des matériaux divisés
Texture des matériaux pulvérulents ou poreux

Auteur(s) : Françoise ROUQUEROL, Laurent LUCIANI, Philip LLEWELLYN, Renaud DENOYEL, Jean ROUQUEROL

Date de publication : 10 mars 2003

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Groupe des solides divisés du MADIREL (Matériaux divisés, revêtements, électrocéramiques)

Centre national de la recherche scientifique

Université de Provence

Bien des solides divisés (soit pulvérulents, soit poreux) qui se trouvent tels quels dans la nature, y ont un rôle important dans les équilibres ou phénomènes naturels. D’autres sont utilisés et exploités par l’homme depuis la nuit des temps. Leur application pratique leur mérite alors le nom de « matériaux » divisés. D’autres enfin sont inventés ou synthétisés chaque année pour résoudre des défis technologiques ou participer à la protection de l’environnement.

Le solide divisé le plus connu est tout simplement le sol. Son aire superficielle et sa porosité déterminent en grande partie sa capacité de rétention non seulement d’eau mais aussi de substances fertilisantes, désherbantes, phytosanitaires ou encore toxiques (métaux lourds, éventuellement radioactifs). Les sables, dans leur forme la plus divisée, sont capables de rester en suspension dans l’air (ils constituent alors un aérosol de poussière) et d’être ainsi transportés sur des milliers de kilomètres, avant d’être précipités au sol par les pluies : c’est ainsi que la poussière rose ou jaune du Sahara se retrouve, un lendemain de pluie, sur les voitures du midi de la France. Maîtrisé, contrôlé et surtout canalisé, ce phénomène est aujourd’hui à la base du transport pneumatique des poudres : farines alimentaires, ciments, soufre, talc, etc.

Depuis longtemps, l’homme a exploité les propriétés adsorbantes du charbon ou de pierres poreuses volcaniques à des fins médicales (aspiration du venin d’une plaie) ou bien la porosité des poteries pour permettre leur refroidissement par évaporation de l’eau qui les traverse, ou encore la puissance technique du « frittage » : c’est grâce à ce dernier que les Étrusques fabriquaient des statuettes en or dans des fours pourtant incapables d’atteindre la température de fusion de l’or (1 063 C) ; l’énergie emmagasinée par les grains de poudre fine – sous forme de défauts structuraux et d’énergie de surface – à la suite de leur broyage permettait en effet, dès 600 à 700 C, la prise en masse des statuettes de poudre d’or compactée.

Aujourd’hui enfin, on invente des adsorbants nouveaux que l’on ajuste le mieux possible (en granulométrie, en taille de pores, en fonctions chimiques superficielles) aux applications visées dont nous ne citerons que certaines :

  • abaissement de la pression de stockage du gaz naturel (afin d’alléger les bouteilles et de permettre leur utilisation sur véhicules propulsés au gaz naturel) ;

  • purification et recyclage de l’atmosphère des avions ;

  • rétention et réemploi des vapeurs d’essence dégagées par les réservoirs de voiture ;

  • rétention et réemploi des vapeurs de solvants à la sortie des tunnels de peinture ;

  • réhabilitation de sols souillés par des métaux lourds ;

  • séparation des gaz de l’air à la température ambiante, sans besoin de température cryogénique (les tailles très voisines des molécules de diazote et de dioxygène nécessitent un ajustement très fin de la texture poreuse et des propriétés superficielles) ;

  • stockage puis relargage progressif de principes actifs médicamenteux, pour assurer une concentration constante dans l’organisme malgré des prises de médicaments très espacées ;

  • réalisation de machines frigorifiques solaires exploitant le caractère fortement endothermique de la désorption de vapeur d’eau ou d’alcool et utilisables pour le stockage de vaccins en pays désertique.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v3-p1050


Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(205 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

1. Caractéristiques des matériaux divisés

Les matériaux divisés se caractérisent avant tout par l’étendue de leur surface disponible au contact du fluide environnant (gaz ou liquide). Disons, pour fixer les idées, que les matériaux divisés qui nous intéressent dans la suite de cet article ont une aire superficielle comprise entre 0,1 m2 par gramme d’échantillon (soit déjà 150 à 450 fois supérieure à celle d’un cube compact de 1g) et 2 600 m2.g–1 (qui serait l’aire spécifique d’un échantillon de graphite totalement exfolié, c’est-à-dire dont on aurait totalement séparé tous les feuillets ; certains charbons actifs s’en approchent).

Cette aire superficielle peut provenir soit de la finesse des particules constituant la poudre, soit de leur porosité, soit des deux.

La « finesse » des particules fait intervenir à la fois leur forme et leur taille : celles-ci peuvent être en effet aussi bien sous la forme des feuillets que l’on trouve dans le graphite que nous venons d’évoquer ou dans la kaolinite (figure 1a) que sous la forme de grains plus ramassés, plus ou moins polyédriques ou sphériques (figure 1b) ou encore d’aiguilles souvent enchevêtrées, comme dans le plâtre (figure 1c). Les grains très fins (de l’ordre du nanomètre de diamètre) peuvent aussi s’attacher les uns aux autres (comme c’est le cas de la fumée de silice pyrogénique) pour constituer de véritables filets (figure 1) capables de contenir des liquides et de leur donner l’aspect de gels : colles « gels », alcool « solide » pour réchauds, peintures qui ne coulent pas.

Les particules qui ont au moins une dimension comprise entre 1 nm et 1 µm présentent les propriétés caractéristiques des matériaux « divisés ».

La nécessité de définir sans ambiguïté les caractéristiques de ces matériaux pulvérulents ou poreux nous amène à approfondir leur description dans le paragraphe 2...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(205 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Caractéristiques des matériaux divisés
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(205 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS