Présentation

Article

1 - FORMATION DE GOUTTES LIQUIDES ET DE BROUILLARDS

2 - ÉVOLUTION D'UNE GOUTTE

3 - ÉVOLUTION D'UN BROUILLARD

4 - EXPÉRIENCES

5 - CONCLUSION

| Réf : BM2521 v1

Expériences
Évaporation et combustion de gouttes dans les moteurs

Auteur(s) : Roger PRUD'HOMME

Date de publication : 10 juil. 2009

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Roger PRUD'HOMME : Directeur de recherche émérite – Institut Jean Le Rond d'Alembert UMR 7190 – Université Pierre et Marie Curie/Centre National de la Recherche Scientifique – Paris - Consultant à l'Onera/DEFA (département Énergétique fondamentale et appliquée)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Bien connaître les phénomènes en présence, savoir calculer l'évolution d'une goutte ou d'un ensemble de gouttes pour mieux prévoir les performances des moteurs est un objectif qui reste d'actualité. D'abord on a intérêt à ce que l'évaporation et la combustion aient lieu à l'intérieur du moteur et non dans le pot d'échappement (moteurs dits à explosion) ou dans la tuyère (moteurs-fusées à ergols liquides par exemple). Il est bon de rappeler par exemple qu'un premier calcul de la taille d'un moteur de fusée est fait à partir de l'estimation de la longueur nécessaire à la combustion complète d'une goutte de combustible injectée à l'entrée de la chambre de combustion. Améliorer l'efficacité de la combustion pour obtenir de meilleurs rendements, mettre au point des moteurs moins polluants sont des motivations actuelles et d'avenir pour les recherches dans ce domaine. Ces rappels montrent l'importance capitale du sujet abordé au travers de quelques-uns des problèmes posés par l'évaporation et la combustion de gouttes.

Dans la première partie (paragraphe 1) il est question de la génération de gouttes, naturelles (la rosée) ou artificielles (l'injection dans les moteurs, les sprays). Est donc étudiée la formation de sprays par déstabilisation de nappes liquides planes, cylindriques ou coniques. Une place particulière est accordée aux moteurs Diesel. La détermination de la distribution en taille des gouttes est présentée par la méthode du maximum d'entropie appliquée aux nappes minces. Cette méthode atteint ses limites lorsque l'on veut étudier l'atomisation de jets épais, comme c'est le cas dans les moteurs-fusées cryotechniques.

La seconde partie (paragraphe 2) est consacrée à la combustion d'une goutte seule, avec des hypothèses simplificatrices diverses, dont l'absence d'interaction avec ses voisines. La célèbre « loi du d2 » y est présentée ainsi que les cas où elle n'est plus valable. On traitera en particulier de problèmes d'instabilités de combustion et d'évaporation au voisinage du point critique.

Les ensembles de gouttes (c'est-à-dire les milieux diphasiques et les brouillards) sont évoqués au paragraphe 3, surtout dans le cas d'une seule classe de taille. On y introduit les lois d'interaction particule-gaz à partir de la thermodynamique des processus irréversibles appliquée à différentes échelles.

Le paragraphe 4 fait état d'expériences plus ou moins fondamentales. Y sont évoqués principalement la micropesanteur et le banc de simulation Mascotte de l'Onera. La première est décisive si l'on veut obtenir de grosses gouttes (mieux appropriées à l'observation fine) conservant une configuration la plus sphérique possible (plus faciles à calculer) en évitant la convection naturelle. Le second est un instrument de choix pour étudier ce qui peut se passer dans un moteur cryotechnique.

Certaines parties de ce travail se rapportent à des activités financées et conduites dans le cadre du programme franco-allemand sur la stabilité de combustion haute fréquence impliquant six partenaires : le CNES, l'Onera, le CNRS, le DLR, Snecma, et EADS-ST (paragraphe 2), dans le cadre des GDR no 2258 et no 2799 (CNES/CNRS) (paragraphe 2 et paragraphe 4.1) et dans le cadre des activités R&T CNES/Snecma appliquée à l'étude des phénomènes de combustion dans les chambres de combustion des moteurs-fusées à ergols liquides (paragraphe 4.2).

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-bm2521


Cet article fait partie de l’offre

Machines hydrauliques, aérodynamiques et thermiques

(177 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

4. Expériences

4.1 Intérêt de la micropesanteur

Comme il est indiqué dans le paragraphe 2.1, les expériences en micropesanteur sont les mieux adaptées à l'étude de combustion de gouttes. Les expériences de Kumagai [56] ont été réalisées en laboratoire en chute libre de 0,5 s avec une très bonne qualité de micropesanteur. Les tours et puits d'apesanteur actuelles permettent de réaliser des expériences avec une qualité analogue (de l'ordre de 10–4 g) mais sur des temps beaucoup plus longs de l'ordre de 5 à 10 s. Pour augmenter le temps de micropesanteur on tend à lancer la capsule d'expérience à partir du bas à l'aide d'une catapulte comme au ZARM de Brême (figure 28), au lieu de la lâcher d'en haut.

Les vols paraboliques reproduisent une micropesanteur d'environ 10–2 g pendant 20 s environ et permettent d'obtenir des résultats convenables pour la combustion et l'évaporation de gouttes.

Enfin, les fusées sondes (celles de l'ESA sont lancées de Kiruna en Suède) donnent 10–5 g pendant 15 min (figure 29) et les expériences en satellite et actuellement dans la Station spatiale internationale (ISS) donnent une excellente qualité durant un temps théoriquement illimité (figure 30). Ces derniers modes demandent une préparation longue. Des problèmes de sécurité se posent pour tous les vols habités et les expériences de combustion font toujours craindre les explosions et les incendies. L'instrument DECLIC a été mis au point pour...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Machines hydrauliques, aérodynamiques et thermiques

(177 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Expériences
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Machines hydrauliques, aérodynamiques et thermiques

(177 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS