Présentation
Auteur(s)
-
Bernard DEMOULIN : Docteur ès Sciences Physiques - Maître de Conférences à l’Université des Sciences et Techniques de Lille - Laboratoire de Radiopropagation et Électronique, URA CNRS n 289
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
De nombreux phénomènes physiques, ainsi que la plupart des chaînes de mesure, mettent en jeu des variables aléatoires qui dépendent d’un paramètre déterministe.
Ces processus particuliers appartiennent à la classe des fonctions aléatoires, dont l’exemple le plus concret est représenté par les signaux où le paramètre déterministe n’est autre que la variable temps. Les fonctions aléatoires jouissent de propriétés remarquables qui en simplifient souvent l’étude et la caractérisation. La propriété la plus usuelle est la stationnarité puisqu’elle consiste à reconnaître une quasi-invariance du comportement statistique de la variable aléatoire quelle que soit la valeur attribuée au paramètre déterministe 1. Autrement dit, un signal aléatoire est stationnaire si les moments et la densité de probabilité sont indépendants du temps. Une étude plus attentive des fonctions aléatoires montre cependant que la stationnarité n’est pas toujours acquise et qu’il faut parfois distinguer la stationnarité au sens strict de celle qui regarde l’ordre des moments de la fonction.
Une autre propriété, étroitement associée à la précédente, s’appelle l’ergodisme 2. L’ergodisme apporte d’intéressantes simplifications dans la mesure où l’on peut exploiter la convergence existant entre les moments de la variable aléatoire et les valeurs moyennes de la fonction calculées par intégration sur le paramètre déterministe. Cette propriété n’est pas très aisée à justifier sur le plan théorique, aussi faut-il souvent user de considérations intuitives pour la découvrir.
Le domaine d’application le plus répandu des fonctions aléatoires est certainement le traitement des signaux. Même doté des propriétés de stationnarité et d’ergodicité, un signal aléatoire n’est pas facile à caractériser à cause de l’impossibilité de le décrire analytiquement et d’y associer un spectre au sens habituel de l’intégrale de Fourier.
Les fonctions de corrélation et les densités spectrales de puissance vont toutefois apporter une réponse positive à ce problème.
En effet, les premières sont la généralisation des coefficients de corrélation traitant de systèmes à deux variables aléatoires. On distinguera la fonction d’autocorrélation, dont le principe est d’exprimer la dépendance stochastique de deux échantillons d’un même signal en fonction du décalage temporel qui les sépare, et la fonction d’intercorrélation qui concerne les échantillons de deux signaux distincts 3.
Les exemples montrent qu’il est souvent possible d’exprimer analytiquement ces fonctions et d’accéder ainsi à une représentation mathématique caractérisant les propriétés stochastiques des signaux aléatoires.
Les fonctions d’autocorrélation et d’intercorrélation étant bornées, on peut leur appliquer l’intégrale de Fourier dont le résultat s’appelle l’autospectre et l’interspectre. Cette transformation mathématique, plus connue sous le nom de théorème de Wiener-Khintchine, se révèle un artifice très puissant pour caractériser la signature spectrale des signaux aléatoires stationnaires 4.
Une classe particulière de fonctions aléatoires obéit aux processus de Markov et plus particulièrement aux processus de Gauss-Markov. Nous en rappellerons les principales hypothèses et insisterons sur les propriétés remarquables de leurs fonctions d’autocorrélation 5.
Cet article fait suite à l’article Processus aléatoires Processus aléatoires du présent traité, auquel le lecteur se reportera.
VERSIONS
- Version courante de mars 2014 par Bernard DEMOULIN
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Instrumentation et méthodes de mesure
(50 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Notions sur les processus de Markov
5.1 Définition
Soit une suite de variables aléatoires provenant de l’échantillonnage d’une fonction aléatoire stationnaire x (t ). Cette fonction suit un processus de Markov lorsque la probabilité conditionnelle d’obtenir lorsque l’on se fixe est identique à la probabilité conditionnelle obtenue lorsque l’on se fixe seulement .
En d’autres termes, un processus markovien signifie que la valeur de la fonction x (t ) en t = tn + 1 est influencée par la valeur de cette fonction en t = tn mais qu’elle n’est pas influencée par x (t ) lorsque la variable t est inférieure à tn . Cette propriété reste vraie lorsque l’on affecte à la variable t la valeur tn + α où α est un entier positif, la dépendance stochastique liant sera cependant plus faible que la dépendance stochastique liant .
Les probabilités, les densités de probabilité et les fonctions d’autocorrélation des processus de Markov jouissent de propriétés remarquables que nous étudions ci-après.
HAUT DE PAGE5.2 Processus discrets
La variable x est supposée suivre ici un échelonnement discret, elle appartient par conséquent à l’ensemble des valeurs :
Cet article fait partie de l’offre
Instrumentation et méthodes de mesure
(50 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Notions sur les processus de Markov
Cet article fait partie de l’offre
Instrumentation et méthodes de mesure
(50 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive