Présentation

Article

1 - FONCTIONS ALÉATOIRES STATIONNAIRES

2 - ERGODISME

3 - FONCTIONS DE CORRÉLATION

4 - DENSITÉ SPECTRALE DE PUISSANCE

5 - NOTIONS SUR LES PROCESSUS DE MARKOV

  • 5.1 - Définition
  • 5.2 - Processus discrets
  • 5.3 - Processus continus
  • 5.4 - Fonction d’autocorrélation des processus de Markov

6 - CONCLUSION

| Réf : R220 v1

Conclusion
Fonctions aléatoires

Auteur(s) : Bernard DEMOULIN

Date de publication : 10 avr. 1990

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Bernard DEMOULIN : Docteur ès Sciences Physiques - Maître de Conférences à l’Université des Sciences et Techniques de Lille - Laboratoire de Radiopropagation et Électronique, URA CNRS n 289

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

De nombreux phénomènes physiques, ainsi que la plupart des chaînes de mesure, mettent en jeu des variables aléatoires qui dépendent d’un paramètre déterministe.

Ces processus particuliers appartiennent à la classe des fonctions aléatoires, dont l’exemple le plus concret est représenté par les signaux où le paramètre déterministe n’est autre que la variable temps. Les fonctions aléatoires jouissent de propriétés remarquables qui en simplifient souvent l’étude et la caractérisation. La propriété la plus usuelle est la stationnarité puisqu’elle consiste à reconnaître une quasi-invariance du comportement statistique de la variable aléatoire quelle que soit la valeur attribuée au paramètre déterministe 1. Autrement dit, un signal aléatoire est stationnaire si les moments et la densité de probabilité sont indépendants du temps. Une étude plus attentive des fonctions aléatoires montre cependant que la stationnarité n’est pas toujours acquise et qu’il faut parfois distinguer la stationnarité au sens strict de celle qui regarde l’ordre des moments de la fonction.

Une autre propriété, étroitement associée à la précédente, s’appelle l’ergodisme 2. L’ergodisme apporte d’intéressantes simplifications dans la mesure où l’on peut exploiter la convergence existant entre les moments de la variable aléatoire et les valeurs moyennes de la fonction calculées par intégration sur le paramètre déterministe. Cette propriété n’est pas très aisée à justifier sur le plan théorique, aussi faut-il souvent user de considérations intuitives pour la découvrir.

Le domaine d’application le plus répandu des fonctions aléatoires est certainement le traitement des signaux. Même doté des propriétés de stationnarité et d’ergodicité, un signal aléatoire n’est pas facile à caractériser à cause de l’impossibilité de le décrire analytiquement et d’y associer un spectre au sens habituel de l’intégrale de Fourier.

Les fonctions de corrélation et les densités spectrales de puissance vont toutefois apporter une réponse positive à ce problème.

En effet, les premières sont la généralisation des coefficients de corrélation traitant de systèmes à deux variables aléatoires. On distinguera la fonction d’autocorrélation, dont le principe est d’exprimer la dépendance stochastique de deux échantillons d’un même signal en fonction du décalage temporel qui les sépare, et la fonction d’intercorrélation qui concerne les échantillons de deux signaux distincts 3.

Les exemples montrent qu’il est souvent possible d’exprimer analytiquement ces fonctions et d’accéder ainsi à une représentation mathématique caractérisant les propriétés stochastiques des signaux aléatoires.

Les fonctions d’autocorrélation et d’intercorrélation étant bornées, on peut leur appliquer l’intégrale de Fourier dont le résultat s’appelle l’autospectre et l’interspectre. Cette transformation mathématique, plus connue sous le nom de théorème de Wiener-Khintchine, se révèle un artifice très puissant pour caractériser la signature spectrale des signaux aléatoires stationnaires 4.

Une classe particulière de fonctions aléatoires obéit aux processus de Markov et plus particulièrement aux processus de Gauss-Markov. Nous en rappellerons les principales hypothèses et insisterons sur les propriétés remarquables de leurs fonctions d’autocorrélation 5.

Cet article fait suite à l’article Processus aléatoires Processus aléatoires du présent traité, auquel le lecteur se reportera.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-r220


Cet article fait partie de l’offre

Instrumentation et méthodes de mesure

(50 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

6. Conclusion

La démarche adoptée pour introduire les outils mathématiques destinés à traiter les fonctions aléatoires a été orientée, pour des raisons de simplicité, vers un aspect très physique.

Il existe cependant des théories relatant avec détails et précision la recherche des critères de stationnarité et d’ergodisme des fonctions aléatoires ; les ouvrages cités en bibliographie décrivent assez largement cette approche purement mathématique.

Un aspect peu abordé dans cet article concerne l’estimation numérique. En effet, dès que les fonctions aléatoires apparaissent sous forme de données numériques provenant d’une chaîne de mesure, il est rare de pouvoir exploiter les fonctions de corrélation et la densité spectrale de puissance sous leur détermination analytique. Il faut alors recourir à une estimation numérique de ces grandeurs.

La recherche d’un estimateur adéquat n’est pas chose simple, il faut d’ailleurs reconnaître qu’un estimateur introduit souvent des erreurs dues à la variance. Cette orientation très spécifique de l’étude des fonctions aléatoires appartient plutôt au traitement du signal, domaine privilégié de l’application des estimateurs, sur lequel les titres cités en référence apportent d’intéressantes précisions.

Les fonctions aléatoires non stationnaires sont également peu évoquées dans cet article. La raison en est due aux considérations théoriques que requiert l’étude de ces fonctions et au fait qu’il existe peu de transfert industriel de ces théories, dont les rares applications sont actuellement cantonnées à la recherche scientifique.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Instrumentation et méthodes de mesure

(50 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Instrumentation et méthodes de mesure

(50 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS