Présentation
RÉSUMÉ
Ce document rassemble les données fondamentales pour l’utilisation d’alliages à base de TiAl, qui comprend leurs caractéristiques propres, les différentes compositions, les microstructures rencontrées et les procédés d’élaboration et de transformation. Suite à la description d’un certain nombre de facteurs limitatifs pour l’obtention de propriétés reproductibles, un ensemble de propriétés d’usage est passé en revue. Le document se termine par les enjeux économiques et les domaines d’application.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Marc THOMAS : Docteur ingénieur à l’ONERA - Chef de projet au Département Matériaux et Structures Métalliques (DMSM)
INTRODUCTION
L’émergence des alliages intermétalliques à base de TiAl trouve son origine à la fois dans la forte attractivité de ce nouveau matériau aux propriétés uniques et dans le contexte économique et industriel de réduction des coûts. Un certain nombre de facteurs (réduction de masse, baisse de consommation de carburant, coûts de maintenance, nuisances environnementales) liés à la performance des turbomachines, justifie le fait que les constructeurs aéronautiques soient en quête de matériaux légers, mais capables de supporter des températures de fonctionnement toujours plus hautes pour un gain en puissance. Les critères de choix pour ces nouveaux matériaux sont d’une part l’évolution de la température d’entrée de turbine et d’autre part l’évolution du rapport poussée/masse.
Un petit regard en arrière permet de se souvenir qu’à l’aube des années quatre-vingt, les progrès les plus significatifs que l’on pouvait espérer au niveau des alliages de titane conventionnels résidaient dans une optimisation incrémentale des procédés de transformation d’alliages existants. L’horizon était bouché avec ces alliages, en particulier en raison des problèmes liés à l’oxydation au-delà de 600 °C qui limitaient la température d’utilisation. Dans le même temps, TiAl affichait des propriétés physiques intéressantes par rapport au titane en terme de rigidité spécifique et de résistance au feu. De plus, ses propriétés statiques et cycliques s’avéraient potentiellement au moins équivalentes à celles des superalliages base nickel. Le développement de ces nouveaux intermétalliques ordonnés fut considéré comme très prometteur avec une capacité en température escomptée jusqu’à 850 °C. Les matériaux à base de Ti3Al ont été les premiers à être étudiés dans les années quatre-vingt, mais ils se sont avérés trop limités en résistance à l’oxydation et à la tenue au fluage. Des recherches puis le développement sur les alliages à base de TiAl débutèrent à partir du début des années quatre-vingt-dix.
VERSIONS
- Version courante de juin 2020 par Marc THOMAS
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Étude et propriétés des métaux
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Élaboration et transformation
3.1 Fabrication de lingots
Un certain nombre d’écueils existent lorsqu’il s’agit de fabriquer des lingots en alliages à base de TiAl. Tout d’abord, l’écart entre les points de fusion pour les éléments titane et aluminium aboutit à un risque non négligeable de conserver des infondus ou de vaporiser une partie de l’aluminium. Ensuite, la complexité et la durée des différentes étapes de solidification et de refroidissement favorisent la rétention de micro et macroségrégations chimiques dans le lingot. D’autre part, les techniques utilisant un creuset céramique ne sont pas adaptées pour l'élaboration de TiAl, d'une part en raison de la forte réactivité de certains éléments tels que le titane vis-à-vis du creuset, et d'autre part en raison de l'ajout de certains éléments réfractaires ayant un point de fusion élevé. En conséquence, l'utilisation d'un creuset en cuivre refroidi est recommandée, bien que ce choix limite les possibilités de surfusion du métal liquide. En effet, la limitation des capacités de surfusion de certaines techniques de coulée peut tendre à couler trop rapidement le métal liquide dans le moule, ce qui entraîne des turbulences et l’emprisonnement de gaz.
Aux État-Unis, la majorité des lingots TiAl destinés à la fonderie ont été élaborés par Induction Skull Remelting (ISR) par Flowserve Corporation. Cette technique est utilisée pour des matériaux réactifs ou lorsqu’un haut niveau de pureté est exigé. L'induction électromagnétique limite la contamination dans le métal liquide et garantit une bonne homogénéisation. Le rendement thermique étant toutefois limité par des pertes en conduction et en rayonnement, cette technique est plus adaptée pour produire de petits lingots de laboratoire d’une centaine de millimètres de diamètre. On peut augmenter la surfusion, en général très limitée, par l'incorporation d'une torche plasma.
Une seconde technique d’élaboration a été utilisée aux États-Unis chez Allvac pour la fabrication de lingots plus importants : la technique PACHM (Plasma Arc Cold Hearth Melting). Les mérites de la technique plasma sont de plusieurs ordres : peu de contraintes résiduelles ; pas d’évaporation d’aluminium en travaillant avec une légère surpression de gaz neutre ; souplesse au niveau des types de demi-produits (différents types...
Cet article fait partie de l’offre
Étude et propriétés des métaux
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Élaboration et transformation
BIBLIOGRAPHIE
-
(1) - DIMIDUK (D.M.), McQUAY (P.A.), KIM (Y-W.) - * - . – « Titanium ’99 : Science and Technology », Proceedings de « 9th World Conference on Titanium », p. 259 (1999).
-
(2) - McCULLOUGH (C.), VALENCIA (J.J.), LEVI (C.G.), MEHRABIAN (R.) - * - . – Acta Materialia, 37, p. 1321 (1989).
-
(3) - DENQUIN (A.) - * - . – Thèse de Doctorat de l’Université des Sciences et Technologies de Lille (1994).
-
(4) - ZGHAL (S.) - * - . – Thèse de doctorat de l’Université Paul Sabatier de Toulouse (1997).
-
(5) - WOOD (J.R.) - * - . – Gamma Titanium Aluminides 2003, éditeur Y-W. Kim, H. Clemens, A.H. Rosenberger, p. 227 (2003).
-
(6) - YOLTON (C.F.), KIM (Y-W.), HABEL (U.) - * - . – Gamma Titanium Aluminides...
Cet article fait partie de l’offre
Étude et propriétés des métaux
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive