Présentation
Auteur(s)
-
Thierry LEMOINE : Directeur technique, THALES Composants et Sous-systèmes
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Le premier article sur les tubes électroniques a proposé un aperçu des technologies de base à tout tube électronique : cathodes, optique électronique, vide et haute tension... Les tubes à grille, les klystrons et les IOT (« Inductive Output Tube ») ont également fait l'objet d'une introduction. Cette seconde partie se focalise sur les familles de tubes absents de la première partie : TWT (« Traveling-Wave Tube », ou tube à ondes progressives, TOP en français), magnétrons, gyrotrons. Les principes de fonctionnement sont expliqués, ainsi que les performances actuelles et accessibles, et les principaux domaines d'utilisation sont introduits. Un paragraphe est ensuite dédié aux éléments de comparaison entre solutions « à tube » et solutions « état solide ». Enfin, une brève revue des acteurs industriels et académiques est proposée dans la fiche documentaire « Pour en savoir plus » .
L'auteur tient à exprimer sa reconnaissance envers les experts techniques de THALES qui l'ont assisté dans la relecture de ce document, en particulier MM. Alain Durand, Christian Robert et Philippe Thouvenin.
VERSIONS
- Version courante de mai 2017 par Thierry LEMOINE
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. TWT à hélice
1.1 Principe de fonctionnement
Les TWT (Traveling Wave Tubes, ou tubes à ondes progressives (TOP) en français) ont été imaginés par l’Autrichien Rudolph Kompfner quatre ans après l’invention du klystron, mais c’est John R. Pierce, chercheur de grand talent aux Bell Labs, qui le premier a compris tout le potentiel de ces dispositifs, et qui en a établi la théorie entre 1944 et 1947 . Dans un klystron, bunching puis rayonnement de l’énergie résultent de l’interaction entre un faisceau d’électrons et une onde stationnaire dans une cavité. Dans un TWT , le faisceau interagit avec une onde progressive, dont la vitesse de phase est voisine mais très légèrement inférieure à celle des électrons (on parle d’onde « lente »). Intervient alors un principe physique connu sous le nom d’effet Tcherenkov : une particule chargée qui traverse un milieu d'« indice » supérieur à 1, animée d’une vitesse à peine supérieure à celle de la lumière dans ce milieu, rayonne son énergie.
Ce phénomène est général en physique ondulatoire, on le constate aussi en acoustique : un avion volant au-delà de la vitesse du son cède une partie de son énergie cinétique sous forme d’une onde acoustique (le « double bang »). L’originalité du TWT tient à la façon dont l’onde est ralentie (les électrons ne pouvant être plus rapides que la lumière dans le vide !) : au lieu de se propager dans un milieu matériel d’indice supérieur à 1, qui ferait obstacle au faisceau, l’onde suit une trajectoire hélicoïdale dans le vide, et le champ électrique RF sur l’axe de l’hélice évolue à la vitesse c.sinφ , où φ = arctang(p/2πa), p étant le pas de l’hélice et a son rayon : en pratique, c.sinφ vaut entre c/4 et c/10. Les électrons qui circulent sur l’axe peuvent donc, s’ils sont suffisamment énergétiques, être plus « rapides » que l’onde (figure 1a).
Un TWT fonctionne donc de la manière suivante. Un faisceau continu d’électrons délivré par un canon et caractérisé par Vk et Ik suit l’axe z de l’hélice à la vitesse vz...
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
TWT à hélice
BIBLIOGRAPHIE
-
(1) - GILMOUR (A.S.Jr.) - Microwave Tubes - Artech House, 1986.
-
(2) - GEWARTOWSKI (J.W.) et al - Principles of Electron Tubes - D. van Nostrand, 1965.
-
(3) - PIERCE (J.R.) - Theory and Design of Electron Beams - D. van Nostrand, 1954.
-
(4) - SPANGENBERG (K.R.) - Vacuum Tubes - McGraw-Hill, 1948.
-
(5) - WARNECKE (R.) et al - Tubes à modulation de vitesse - Gauthier-Villars, 1951.
-
(6) - BARKER (R.J.) et al - Modern Microwave and Millimeter-Wave Power Electronics - Wiley, 2005.
-
(7) - PIERCE (J.R.) - Traveling-wave Tubes - D. van Nostrand...
ANNEXES
Cette liste est aussi complète que possible, mais il y a forcément quelques omissions, dont l'auteur espère qu'il ne lui en sera pas tenu rigueur. Elle est classée par pays. Les différences de taille entre ces acteurs ne sont pas indiquées, mais elles peuvent être importantes.
Les acteurs industriels (tableau ) ont (presque) tous un site Internet sur lequel leurs produits sont présentés. Les acteurs académiques retenus (tableau ) sont ceux qui ont présenté récemment le résultat de leurs travaux à la conférence annuelle IVEC.
Aux États-Unis, CPI est la nouvelle identité de l'activité tubes électroniques autrefois propriété de Varian, qui regroupe également des activités cédées par les sociétés Eimac, Bomac, SFD, Econco et GE (TWT). L3-ED est la nouvelle identité de l'activité tubes électroniques autrefois propriété de Litton, et qui regroupe des activités cédées par les sociétés Raytheon, RCA, Sylvania, Northrop-Grumman (anciennement Hallicrafters) et GE (klystrons). L3-ETI est la nouvelle identité de l'ancienne activité tubes de Hughes Aircraft (HEDD, propriété pendant quelques années de Boeing (BEDD)). L3-ED et L3-ETI font toutes deux partie du groupe américain L3-COM. Enfin, Teledyne a repris d'anciennes activités de MEC et de Sylvania.
En Europe, Thales regroupe les activités tubes autrefois propriété des groupes Thomson, CSF, Telefunken (AEG), Siemens et ABB. e2V hérite des activités tubes de EEV et de GEC/MOV.
Si l'industrie occidentale des tubes électroniques a fait l'objet de nombreuses opérations de rationalisation, elle n'a pas subi de délocalisation de sa production (ni de sa R&D) vers des pays à bas coût de main-d'œuvre (LCC). Par contre, des concurrents sont apparus en Asie, très souvent soutenus par des autorités locales soucieuses d'indépendance nationale sur des composants jugés critiques.
...Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive