Présentation
Auteur(s)
-
Thierry LEMOINE : Directeur technique, THALES Composants et Sous-systèmes
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Le premier article sur les tubes électroniques a proposé un aperçu des technologies de base à tout tube électronique : cathodes, optique électronique, vide et haute tension... Les tubes à grille, les klystrons et les IOT (« Inductive Output Tube ») ont également fait l'objet d'une introduction. Cette seconde partie se focalise sur les familles de tubes absents de la première partie : TWT (« Traveling-Wave Tube », ou tube à ondes progressives, TOP en français), magnétrons, gyrotrons. Les principes de fonctionnement sont expliqués, ainsi que les performances actuelles et accessibles, et les principaux domaines d'utilisation sont introduits. Un paragraphe est ensuite dédié aux éléments de comparaison entre solutions « à tube » et solutions « état solide ». Enfin, une brève revue des acteurs industriels et académiques est proposée dans la fiche documentaire « Pour en savoir plus » .
L'auteur tient à exprimer sa reconnaissance envers les experts techniques de THALES qui l'ont assisté dans la relecture de ce document, en particulier MM. Alain Durand, Christian Robert et Philippe Thouvenin.
VERSIONS
- Version courante de mai 2017 par Thierry LEMOINE
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Comparaison entre tubes et état solide
6.1 Critères de choix
Si on fait abstraction des très faibles et très fortes puissances (figure 27), c’est un sujet moins simple qu’il n’y paraît, car une comparaison suppose des critères de choix, et ceux-ci dépendent des applications considérées et des utilisateurs. Citons les principaux :
-
le coût d’achat vient souvent en premier, en tenant compte du coût de conception si le dispositif recherché n’est pas commercialement disponible ;
-
le coût de possession, qui ajoute au coût d’achat le coût de maintien en service de l’équipement qui accueillera l’amplificateur : consommation électrique, durée de vie de l’amplificateur, coût des réparations, coût de gestion des obsolescences de composants électroniques... ;
-
le rendement électrique, si l’équipement dispose d’une ressource d’énergie limitée (c’est le cas des satellites) ;
-
la fiabilité, et la disponibilité opérationnelle, soit parce que l’équipement n’est pas réparable (sur un satellite...), soit parce que l’utilisateur ne veut à aucun prix que son équipement puisse tomber en panne inopinément, et qu’il souhaite une dégradation douce et la possibilité de réparer quand il le désire ;
-
et, évidemment, le respect des performances visées , notamment en termes de puissance, de bande passante et de linéarité.
S’ajoutent d’autres critères moins objectifs, mais très réels, dont le principal est la capacité de l’équipementier à concevoir ou à intégrer, voire à maintenir en état, des dispositifs fonctionnant sous très haute tension.
Il est enfin des cas où le choix entre amplificateur à tube et amplificateur état solide est le résultat d’une réflexion plus globale au niveau de l’architecture de l’équipement qui les accueille : le meilleur exemple est celui des antennes à balayage électronique.
Sur l’état solide, le lecteur est invité à consulter les articles Amplification de puissance radiofréquence à l'état solide .
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Comparaison entre tubes et état solide
BIBLIOGRAPHIE
-
(1) - GILMOUR (A.S.Jr.) - Microwave Tubes - Artech House, 1986.
-
(2) - GEWARTOWSKI (J.W.) et al - Principles of Electron Tubes - D. van Nostrand, 1965.
-
(3) - PIERCE (J.R.) - Theory and Design of Electron Beams - D. van Nostrand, 1954.
-
(4) - SPANGENBERG (K.R.) - Vacuum Tubes - McGraw-Hill, 1948.
-
(5) - WARNECKE (R.) et al - Tubes à modulation de vitesse - Gauthier-Villars, 1951.
-
(6) - BARKER (R.J.) et al - Modern Microwave and Millimeter-Wave Power Electronics - Wiley, 2005.
-
(7) - PIERCE (J.R.) - Traveling-wave Tubes - D. van Nostrand...
ANNEXES
Cette liste est aussi complète que possible, mais il y a forcément quelques omissions, dont l'auteur espère qu'il ne lui en sera pas tenu rigueur. Elle est classée par pays. Les différences de taille entre ces acteurs ne sont pas indiquées, mais elles peuvent être importantes.
Les acteurs industriels (tableau ) ont (presque) tous un site Internet sur lequel leurs produits sont présentés. Les acteurs académiques retenus (tableau ) sont ceux qui ont présenté récemment le résultat de leurs travaux à la conférence annuelle IVEC.
Aux États-Unis, CPI est la nouvelle identité de l'activité tubes électroniques autrefois propriété de Varian, qui regroupe également des activités cédées par les sociétés Eimac, Bomac, SFD, Econco et GE (TWT). L3-ED est la nouvelle identité de l'activité tubes électroniques autrefois propriété de Litton, et qui regroupe des activités cédées par les sociétés Raytheon, RCA, Sylvania, Northrop-Grumman (anciennement Hallicrafters) et GE (klystrons). L3-ETI est la nouvelle identité de l'ancienne activité tubes de Hughes Aircraft (HEDD, propriété pendant quelques années de Boeing (BEDD)). L3-ED et L3-ETI font toutes deux partie du groupe américain L3-COM. Enfin, Teledyne a repris d'anciennes activités de MEC et de Sylvania.
En Europe, Thales regroupe les activités tubes autrefois propriété des groupes Thomson, CSF, Telefunken (AEG), Siemens et ABB. e2V hérite des activités tubes de EEV et de GEC/MOV.
Si l'industrie occidentale des tubes électroniques a fait l'objet de nombreuses opérations de rationalisation, elle n'a pas subi de délocalisation de sa production (ni de sa R&D) vers des pays à bas coût de main-d'œuvre (LCC). Par contre, des concurrents sont apparus en Asie, très souvent soutenus par des autorités locales soucieuses d'indépendance nationale sur des composants jugés critiques.
...Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive