Présentation
Auteur(s)
-
Marcel JUFER : Docteur ès sciences techniques - Professeur à l’École Polytechnique Fédérale de Lausanne - Directeur de l’Institut d’Électromécanique et Machines Électriques - Dr HC Cluj (Roumanie), Mons (Belgique) et Grenoble (France)
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
La conversion d’énergie électrique en énergie mécanique ou en énergie électrique de tension différente (transformateurs) recourt à deux types de phénomènes :
-
les phénomènes électriques associés au courant ;
-
les phénomènes magnétiques associés au flux magnétique.
Ces deux types de phénomènes, liés par les équations de Maxwell, interagissent de façon très directe dans les systèmes électromécaniques et électromagnétiques. En effet, les circuits correspondants, supports respectifs du courant et du flux, sont toujours imbriqués.
L’étude de tout système électromécanique peut se rattacher à deux modèles situés à des niveaux différents.
-
Le modèle de Maxwell [7], caractérisé par des équations locales, suppose les milieux continus. Il permet, principalement, l’analyse de la distribution des lignes de champ (induction magnétique, densité de courant) associées à un milieu électrique ou magnétique.
-
Le modèle de Kirchhoff, caractérisé par la notion de circuits, comprenant des composants (résistance R, inductance L et condensateur C) et des grandeurs (tension U, courant I et flux magnétique Φ ), résulte de l’intégrale de champs ou de variables locales.
Le recours à un tel modèle et aux équations associées, lorsque cela est possible, simplifie l’analyse et en accroît l’efficacité.
L’analyse de circuits magnétiques implique principalement le passage du modèle de Maxwell à celui de Kirchhoff. Cela se fait en prenant en compte les propriétés des phénomènes magnétiques reposant principalement sur la conservation du flux et la perméabilité des divers milieux ; par ailleurs, l’analogie avec les circuits électriques permet une meilleure compréhension des phénomènes.
La maîtrise des circuits magnétiques, sous forme locale ou intégrale, permet de traiter les aimants permanents et les circuits ferromagnétiques, afin de calculer les forces et couples résultants ainsi que les effets parasites tels que saturation et pertes dans le fer.
En dernier lieu, la conception de systèmes utilisant des circuits magnétiques met en évidence, au travers d’exemples, la démarche spécifique.
VERSIONS
- Version courante de août 2010 par Marcel JUFER
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(269 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Généralités
1.1 Équation de Maxwell en régime stationnaire
1.1.1 Rôle des équations de Maxwell
C’est au cours des XVIIIe et XIXe siècles que l’électromagnétisme a fait l’objet de recherches expérimentales et théoriques qui ont abouti à de nombreuses lois spécifiques : lois de Coulomb, de Biot et Savart, d’Ampère, de Laplace, etc. En 1865, James-Clerk Maxwell en réalisait une formulation globale et synthétique. Depuis lors, ces équations permettent, par une formulation condensée, de contenir toutes les autres, dans le cadre de milieux macroscopiques. Il faut entendre par là un espace, un ensemble de matériaux formés de milieux continus, caractérisés par des propriétés locales telle que résistivité, permittivité et perméabilité, linéaires ou non. La nature corpusculaire de la matière (protons, électrons, neutrons) n’est donc pas prise en compte.
HAUT DE PAGE
Toute particule de l’univers est soumise à l’influence combinée de toutes les autres, que ce soit de type gravitationnel, électromagnétique ou nucléaire. En tout point de l’espace, il est possible de représenter l’ensemble des effets d’une nature déterminée par un champ. Celui-ci est défini comme un vecteur, quotient du vecteur force par la grandeur caractéristique sur laquelle s’exerce cette force.
-
Pour la gravitation, la force s’exerçant sur une masse est associée à un champ tel que :
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(269 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Généralités
BIBLIOGRAPHIE
-
(1) - SABONNADIÈRE (J.C.), COULOMB (J.L.) - Éléments finis et CAO. - Ed. Hermès, Paris, (1986).
-
(2) - JUFER (M.) - Électromécanique, Traité d’électricité, volume IX. - Presses polytechniques et universitaires romandes, Lausanne, (1995).
-
(3) - WOODSON (H.), MELCHER (J.) - Electromechanical dynamics. - R.E. Krieger publishing Co, Malagar Fl, (1985).
-
(4) - SCHÜLER (K.), BRINKMANN (K.) - Dauermagnete – Werkstoff und Anwendung. - Springer Verlag, Berlin, (1970).
-
(5) - KALLENBACH (E.) - Der Gleichstrommagnet. - Akademische Verlagsgesellschaft, Geest & Portig, Leipzig, (1969).
-
(6) - MOULLIN (E.B.) - The principles of Electromagnetism. - 2nd edition, Clarendon Press, Oxford, (1950).
-
...
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(269 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive