Présentation
RÉSUMÉ
Cet article, consacré à la cinétique électrochimique, rappelle tout d’abord quelques notions de thermodynamique qui permettent de caractériser un système à l’équilibre. Les définitions des grandeurs (potentiel d’électrode, coefficient d’activité) couramment utilisées dans ce domaine et les relations qui régissent les transferts mono- et polyélectroniques, entre autres la loi empirique de Tafel et la loi de Butler-Volmer, sont ensuite détaillées et explicitées. Les applications sont retrouvées essentiellement dans les procédés industriels (générateurs, phénomène de corrosion).
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article dedicated to electrochemical kinetics, starts by recalling certain concepts of thermodynamics which allow for the characterization of a system at the equilibrium state. The definitions of variables (electrode potential, activity coefficient) commonly used in this field and the relationships governing single-and polyelectron transfers, including the empirical Tafel law and the Butler-Volmer law, are then detailed and explained. Applications can be mainly found in industrial processes (generators, corrosion phenomena).
Auteur(s)
-
Didier DEVILLIERS : Professeur Laboratoire LI2C – Électrolytes et électrochimie Université Pierre-et-Marie-Curie – Paris 6
INTRODUCTION
La cinétique joue un rôle essentiel en industrie électrochimique préparative, dans le domaine des générateurs électrochimiques et dans celui de la corrosion. Dans ce dossier de mise au point, nous avons rassemblé, en peu de pages, les définitions précises des grandeurs couramment utilisées en cinétique électrochimique, leur signification physique et les applications principales qui en découlent en électroanalyse et dans les procédés industriels ; enfin, nous avons illustré nos propos par une série de données expérimentales utiles à l'ingénieur, mais aussi au chercheur.
Nous avons rappelé tout d'abord quelques notions de thermodynamique. En effet, avant d'étudier la cinétique d'une réaction, qui correspond à un état hors d'équilibre du système, il est essentiel de bien décrire le système à l'équilibre. La notion de surtension, par exemple, exige la connaissance des potentiels d'électrode à l'équilibre.
VERSIONS
- Version archivée 1 de juin 1962 par Didier DEVILLIERS, Marius CHEMLA
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Caractérisation et propriétés de la matière
(115 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Applications
3.1 Domaine d'électroactivité
L'oxydation et la réduction du solvant ou de l'électrolyte-support constituent deux barrières au-delà desquelles aucune étude n'est possible. La plage de potentiel entre ces deux bornes constitue le domaine d'électroactivité du milieu. Compte tenu du domaine thermodynamique de stabilité de l'eau, limité en réduction par le couple H+/H2 (E o = 0 V) et en oxydation par le couple O2/H2O (E o = 1,23 V), la largeur du domaine d'électroactivité de ce solvant devrait être égale à 1,23 V quel que soit le pH. La plage de potentiel utilisable dépend notamment de la cinétique du dégagement d'oxygène et d'hydrogène. Cette cinétique est tributaire du matériau d'électrode ; le domaine d'électroactivité de l'eau est en fait toujours plus large que 1,23 V (environ 1,7 V sur électrode de platine). En jouant sur les facteurs qui déterminent le domaine d'électroactivité (solvant, électrolyte-support, matériau d'électrode), on peut déterminer les conditions opératoires les plus adaptées à l'étude d'un couple rédox particulier (tableau 11).
On trouvera des données concernant le domaine d'électroactivité de quelques milieux non aqueux dans l'ouvrage de Bard .
HAUT DE PAGE3.2 Polarographie
La surtension de dégagement d'hydrogène est très importante sur cathode de mercure en milieu aqueux. Dépendant du pH, elle est particulièrement élevée avec les électrolytes neutres. L'élargissement de la plage des potentiels négatifs ainsi explorables sur ce type d'électrode permet l'étude quantitative de nombreuses vagues cathodiques. Cette technique électrochimique d'analyse, appelée polarographie, a été mise au point en 1921 par Heyrovsky. Elle reste encore utilisée de nos jours, avec divers perfectionnements qui ont permis d'accroître sa précision (polarographie à impulsions surimposées). Dans les tableaux et sont recensés quelques potentiels de demi-vague obtenus sur électrode à goutte de mercure.
La plage de potentiel est limitée du côté anodique par l'oxydation du mercure en ...
Cet article fait partie de l’offre
Caractérisation et propriétés de la matière
(115 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Applications
Cet article fait partie de l’offre
Caractérisation et propriétés de la matière
(115 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive