Présentation

Article

1 - PRÉSENTATION GÉNÉRALE

2 - PURIFICATION DE LA MACROMOLÉCULE

3 - CRISTALLISATION

4 - ENREGISTREMENT DES DONNÉES DE DIFFRACTION

5 - MÉTHODE DE LA SÉRIE ISOMORPHE

  • 5.1 - Détermination des phases. Cas idéal
  • 5.2 - Détermination des phases. Cas réel
  • 5.3 - Obtention des dérivés lourds
  • 5.4 - Détermination de la position des atomes lourds

6 - UTILISATION DE LA DIFFUSION ANOMALE

7 - REMPLACEMENT MOLÉCULAIRE

8 - CARTES DE DENSITÉ ÉLECTRONIQUE

9 - AFFINEMENT D’UNE STRUCTURE CRISTALLOGRAPHIQUE

  • 9.1 - Méthodes de moindres carrés
  • 9.2 - Méthodes de la dynamique moléculaire
  • 9.3 - Maximum de vraisemblance
  • 9.4 - Cartes de densité électronique
  • 9.5 - Particularités des macromolécules biologiques

10 - BASE DE DONNÉES PDB

11 - PERSPECTIVES

| Réf : P1090 v1

Présentation générale
Cristallographie des macromolécules biologiques

Auteur(s) : Jean CAVARELLI

Date de publication : 10 mars 2000

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Jean CAVARELLI : Professeur de Biologie structurale, université Louis-Pasteur, Strasbourg

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Les molécules biologiques responsables de toute vie cellulaire sont des hétéropolymères de très grande taille appartenant à deux familles : les protéines et les acides nucléiques. Les processus biologiques compliqués sont les résultats d’interactions dynamiques soit de macromolécules biologiques entre elles, soit de macromolécules avec de petits substrats cellulaires. La compréhension de ces mécanismes nécessite en premier lieu la connaissance des structures tridimensionnelles de ces macromolécules soit seules, soit engagées dans des complexes spécifiques. La connaissance de ces structures est l’un des piliers actuels de la biologie moléculaire et représente une source de progrès qui génère des retombées non seulement en recherche fondamentale mais aussi en recherche appliquée (médicale, agroalimentaire). Cela justifie les investissements importants réalisés depuis plusieurs années dans les secteurs publics et privés. La diffraction des rayons X par des monocristaux est la méthode par excellence pour l’étude des macromolécules biologiques. La cristallographie a permis la détermination des structures tridimensionnelles de plusieurs milliers de macromolécules biologiques dans des gammes de taille et de complexité très variées : petites protéines, oligonucléotides, acides ribonucléiques de transfert, immunoglobulines complexes multienzymatiques, complexes nucléoproté-iques, virus d’insectes, de plantes ou de mammifères. Les propriétés physico-chimiques intrinsèques des macromolécules biologiques donnent naissance à des cristaux avec de grands paramètres de maille cristalline et un pouvoir de diffraction en général limité en comparaison du standard actuel des petites molécules organiques. Cela impose des méthodes et des techniques adaptées tout au long du processus cristallographique. Cette méthodologie propre aux macromolécules biologiques va être présentée dans cet article. L’explosion actuelle de cette méthode est due aux progrès réalisés tant au niveau de la technologie (biologie moléculaire, sources de rayons X, détecteurs de rayons X, supercalculateurs puissants) qu’au niveau des logiciels de traitement des données de diffraction (collecte, phasage, affinement). Cela se traduit par un raccourcissement extraordinaire du délai séparant l’obtention d’un premier cristal et la détermination de la structure cristalline. Une étude cristallographique peut maintenant être conduite en quelques mois après l’obtention des premiers cristaux.

La lecture de cet article suppose une bonne connaissance de la cristallographie géométrique et une première initiation à la théorie de la diffraction des rayons X par des monocristaux. Le lecteur pourra se référer aux articles de A. Authier « Cristallographie géométrique » dans le traité de Sciences Fondamentales [1] et de Y. Jeannin « Résolution d’une structure cristalline par rayons X » dans ce traité Analyse et Caractérisation [3].

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-p1090


Cet article fait partie de l’offre

Bioprocédés et bioproductions

(161 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

1. Présentation générale

Les acides nucléiques sont des polynucléotides qui utilisent un alphabet de 4 bases, dont l’unité monomérique contient un sucre furanose, un groupement phosphate et une base hétérocyclique [soit purique (2 possibilités) soit pyrimidique (2 possibilités)]. On distingue deux grandes familles d’acide nucléique, celle de l’ADN (acide désoxyribonucléique) et celle de l’ARN (acide ribonucléique). Dans un ADN, le sucre est un 2’-désoxy-β-D ribose et les deux bases puriques sont l’adénine (A), la guanine (G), alors que les deux bases pyrimidiques sont la thymine (T) et la cytosine (C). Dans les ARN, le sucre est un β-D ribose et la thymine est remplacée par l’uracile. Les protéines sont des polymères construits avec une bibliothèque de 20 acides aminés qui ont chacun des propriétés physico-chimiques originales. La vie d’une cellule est le résultat d’associations dynamiques entre ces macromolécules biologiques, et la fonction biologique d’une macromolécule donnée ne dépend que de sa structure dans l’espace (structure tridimensionnelle). La connaissance des structures tridimensionnelles est dont une condition nécessaire à une compréhension de leurs fonctions. Connaître une structure, ce n’est pas uniquement la décrire mais c’est essayer de répondre à certaines questions de manière à expliquer et à prévoir :

  • expliquer, c’est pouvoir décrire le fonctionnement d’une molécule, les rapports entre la structure et la fonction, les mécanismes par lesquels elle interagit avec d’autres partenaires ;

  • prévoir, c’est prédire l’affinité d’une molécule pour une autre ou prédire l’effet possible de mutations de la séquence.

Deux méthodes sont actuellement utilisées pour déterminer les structures tridimensionnelles des macromolécules biologiques : la diffraction des rayons X et la résonance magnétique nucléaire (RMN). Plus de 80 % des structures connues à ce jour ont été déterminées (on dit résolues) par diffraction des rayons X. Contrairement à la RMN, la cristallographie ne souffre pas de limitations en taille de la macromolécule étudiée et ne présente qu’une seule barrière : être capable d’obtenir des cristaux de la macromolécule étudiée. La diffraction des rayons X...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Bioprocédés et bioproductions

(161 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation générale
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Bioprocédés et bioproductions

(161 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS