Présentation
Auteur(s)
-
Jean CAVARELLI : Professeur de Biologie structurale, université Louis-Pasteur, Strasbourg
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Les molécules biologiques responsables de toute vie cellulaire sont des hétéropolymères de très grande taille appartenant à deux familles : les protéines et les acides nucléiques. Les processus biologiques compliqués sont les résultats d’interactions dynamiques soit de macromolécules biologiques entre elles, soit de macromolécules avec de petits substrats cellulaires. La compréhension de ces mécanismes nécessite en premier lieu la connaissance des structures tridimensionnelles de ces macromolécules soit seules, soit engagées dans des complexes spécifiques. La connaissance de ces structures est l’un des piliers actuels de la biologie moléculaire et représente une source de progrès qui génère des retombées non seulement en recherche fondamentale mais aussi en recherche appliquée (médicale, agroalimentaire). Cela justifie les investissements importants réalisés depuis plusieurs années dans les secteurs publics et privés. La diffraction des rayons X par des monocristaux est la méthode par excellence pour l’étude des macromolécules biologiques. La cristallographie a permis la détermination des structures tridimensionnelles de plusieurs milliers de macromolécules biologiques dans des gammes de taille et de complexité très variées : petites protéines, oligonucléotides, acides ribonucléiques de transfert, immunoglobulines complexes multienzymatiques, complexes nucléoproté-iques, virus d’insectes, de plantes ou de mammifères. Les propriétés physico-chimiques intrinsèques des macromolécules biologiques donnent naissance à des cristaux avec de grands paramètres de maille cristalline et un pouvoir de diffraction en général limité en comparaison du standard actuel des petites molécules organiques. Cela impose des méthodes et des techniques adaptées tout au long du processus cristallographique. Cette méthodologie propre aux macromolécules biologiques va être présentée dans cet article. L’explosion actuelle de cette méthode est due aux progrès réalisés tant au niveau de la technologie (biologie moléculaire, sources de rayons X, détecteurs de rayons X, supercalculateurs puissants) qu’au niveau des logiciels de traitement des données de diffraction (collecte, phasage, affinement). Cela se traduit par un raccourcissement extraordinaire du délai séparant l’obtention d’un premier cristal et la détermination de la structure cristalline. Une étude cristallographique peut maintenant être conduite en quelques mois après l’obtention des premiers cristaux.
La lecture de cet article suppose une bonne connaissance de la cristallographie géométrique et une première initiation à la théorie de la diffraction des rayons X par des monocristaux. Le lecteur pourra se référer aux articles de A. Authier « Cristallographie géométrique » dans le traité de Sciences Fondamentales [1] et de Y. Jeannin « Résolution d’une structure cristalline par rayons X » dans ce traité Analyse et Caractérisation [3].
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Bioprocédés et bioproductions
(161 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
8. Cartes de densité électronique
Le calcul des phases de chaque réflexion étant résolu par l’une des méthodes précédentes, il est possible de calculer une première carte de densité électronique, en pondérant chaque réflexion par la qualité estimée de l’information de phase (figure de mérite). La densité électronique ρ (x, y, z ) en un point de coordonnées relatives (x, y, z ) dans la maille cristalline s’écrit :
avec :
- î Fhkl⋅ et φhkl :
- respectivement module du facteur de structure et phase pour la réflexion hkl
- mhkl :
- figure de mérite
- V :
- volume de la maille cristalline.
Dans la plupart des cas, ces cartes sont difficilement interprétables c’est-à-dire que l’on n’arrive pas à localiser des éléments structuraux caractéristiques des macromolécules biologiques permettant d’initier la construction de la structure. Ceci est dû à l’erreur commise sur les phases qui est souvent de l’ordre de 50 à 60, alors que l’erreur commise sur le module des facteurs de structure n’est que de quelques pour-cent. Comme toute série de Fourier, l’information la plus importante est contenue dans les phases. En utilisant le théorème de Parseval, on peut montrer que si est le facteur de structure réel et si est le facteur de structure utilisé, l’erreur quadratique moyenne commise sur la densité est alors donnée par la relation :
La figure 7 montre que...
Cet article fait partie de l’offre
Bioprocédés et bioproductions
(161 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Cartes de densité électronique
Cet article fait partie de l’offre
Bioprocédés et bioproductions
(161 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive