2. Making hydrogen energy available
2.1 Transport and storage
The intensive industrial use of hydrogen in the chemical sector was marked by the construction in 1938 of a 240 km long hydrogen gas pipeline in the Ruhr region, with a transfer capacity of 250 million Nm 3 per year. Currently installed in many parts of the world, similar pipelines link production units - mainly steam reforming, ethylene cracking or chloralkaline electrolysis units - to the industrial sites where...
Exclusive to subscribers. 97% yet to be discovered!
You do not have access to this resource.
Click here to request your free trial access!
Already subscribed? Log in!
The Ultimate Scientific and Technical Reference
This article is included in
Hydrogen
This offer includes:
Knowledge Base
Updated and enriched with articles validated by our scientific committees
Services
A set of exclusive tools to complement the resources
Practical Path
Operational and didactic, to guarantee the acquisition of transversal skills
Doc & Quiz
Interactive articles with quizzes, for constructive reading
Making hydrogen energy available
Bibliography
Bibliography
Standards and norms
- Liquid hydrogen – Filling system interface for land vehicles - ISO 13984 - 1999
- Liquid hydrogen – Fuel tanks for land vehicles - ISO 13985 - 2006
- Hydrogen fuel quality – Product specification - ISO 14687 - 2019
- Considérations fondamentales pour la sécurité des systèmes à l'hydrogène - ISO/TR 15916 - 2015
- Hydrogen generators using fuel processing technologies – Part 1: Safety - ISO 16110-1...
Directory
Manufacturers – Suppliers – Distributors (non-exhaustive list)
Aaqius (CH) – hydrogen technologies http://www.aaqius.com/
Airbus (EU) – ZEROe program https://www.airbus.com/en/innovation/zero-emission/hydrogen/zeroe
...Exclusive to subscribers. 97% yet to be discovered!
You do not have access to this resource.
Click here to request your free trial access!
Already subscribed? Log in!
The Ultimate Scientific and Technical Reference