Présentation

Article

1 - ÉVOLUTION DES RÉSEAUX MOBILES VERS LE TOUT-IP

2 - ÉVOLUTION DU RÉSEAU DE TRANSPORT VERS LES TECHNOLOGIES PAQUETS

3 - PRINCIPAUX PROTOCOLES IMPLIQUÉS

4 - STANDARDISATION ET INTEROPÉRABILITÉ

  • 4.1 - Standardisation
  • 4.2 - Interopérabilité

5 - CONCLUSION

6 - REMERCIEMENTS

Article de référence | Réf : TE7522 v1

Principaux protocoles impliqués
Réseaux de transport par paquets pour les systèmes radio-mobiles

Auteur(s) : Jérôme BROUET, Arnaud CAUVIN, François DUTHILLEUL

Date de publication : 10 nov. 2010

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Les nouveaux usages mobiles entraînent une augmentation plus que significative des trafics engendrés par les systèmes radio-mobiles. Les opérateurs sont tenus de faire évoluer leur réseau pour absorber ces trafics, et les technologies connaissent de profondes mutations. Ainsi, pour des raisons de coût mais aussi de passage à l'échelle, les technologies de transmission de type circuit laissent la place à des technologies de transport de type paquet. Ces technologies sont plus avantageuses économiquement, plus évolutives, plus adaptées à véhiculer et optimiser des flux de trafic massivement constitués de services de données (avec des caractéristiques de variation de débit très forte en cours de session).

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Jérôme BROUET : Ingénieur en télécommunications, École Nationale Supérieure des Télécommunications (ENST) - Responsable des solutions pour les marchés verticaux, Alcatel-Lucent

  • Arnaud CAUVIN : Ingénieur en télécommunications, Télécom Bretagne - Responsable du programme d'évolution de la collecte mobile, France Telecom – Orange Group

  • François DUTHILLEUL : Ingénieur en télécommunications, Faculté Polytechnique de Mons (FPMs) - Responsable des solutions réseaux DSL/Fibre au sein de la division réseaux d'accès filaire, Alcatel-Lucent

INTRODUCTION

Les usages mobiles connaissent aujourd'hui une profonde mutation sous l'impulsion du déploiement de nouveaux standards de technologies radio à haut-débit (HSPA et HSPA+) et la disponibilité croissante de clés USB 3G ou de terminaux comme les smartphones, permettant d'accéder facilement, rapidement, massivement à du contenu multimédia riche (par exemple, vidéo, Internet, email, messagerie instantanée, fils RSS, musique, TV mobile, réseaux sociaux ou réalité augmentée) en plus des services classiques de téléphonie et de messagerie de type SMS ou MMS.

Ces nouveaux usages et leur intensité entraînent une augmentation significative, presque exponentielle des volumes de trafics véhiculés par les réseaux radio-mobiles. Ils constituent ainsi un défi majeur pour les opérateurs mobiles qui doivent faire évoluer leur réseau pour absorber ces trafics et continuer à offrir des services de qualité à leurs abonnés. En effet, cette augmentation de trafic ne se traduit pas par une augmentation de revenus proportionnelle. En fait, les revenus moyens par abonnés ont plutôt tendance à rester constants ; même si de nouveaux services et capacités leur sont proposés, ils le sont le plus souvent avec des offres de type « flat-fee » (consommation illimitée des services de données dans le cadre d'une utilisation normale) de façon similaire à ce que l'on constate aujourd'hui dans le domaine de l'accès résidentiel haut-débit sur le DSL, le câble ou l'accès fibre. En conséquence, si les investissements sont faits sur la base des technologies qui ont été utilisées jusqu'à présent pour des infrastructures qui supportaient principalement des services voix, il y a un risque de divergence fort entre les investissements supplémentaires que l'opérateur doit consentir pour écouler les besoins des utilisateurs et les revenus qu'il obtient.

Pour répondre à ce défi, de nouvelles technologies permettant de réduire le coût de l'octet transporté sur l'interface radio sont en cours de déploiement, comme le HSPA+ par exemple, ou le seront bientôt comme le LTE. L'émergence de ces nouvelles technologies et le maintien des revenus par abonné engendrent par conséquent une pression supplémentaire sur le réseau de transport qui achemine les trafics mobiles entre les différents nœuds d'un réseau radio-mobile vers les réseaux externes (type Internet, Intranet, réseau de voix…). Il devient ainsi nécessaire de changer la méthodologie de conception des réseaux de transport pour accroître leur capacité tout en maîtrisant les coûts. Les réseaux de transport de type circuit et ATM sont en effet peu économiques lors du passage à l'échelle. Les technologies de type paquet (IP/MPLS, Carrier Ethernet, MPLS-TP*) commencent à être déployées pour traiter cette problématique. Ces technologies sont plus avantageuses économiquement, plus évolutives, plus adaptées à véhiculer et optimiser des flux de trafic massivement constitués de services de données (avec des caractéristiques de variation de débit très forte en cours de session).

Cet article expose les défis techniques qui doivent être adressés lors de la migration d'un réseau de transport mobile conventionnel vers un réseau de transport tout paquet. Ces défis sont divers. Ils recouvrent les besoins inhérents aux déploiements de nouveaux standards radio (débit très élevé, nouvelles interfaces des nœuds mobiles, nouveaux protocoles, nouvelles topologies), la nécessité de supporter sur un même réseau de transport des technologies mobiles de différentes générations (compatibilité avec la base installée), la nécessité de gérer la qualité de service de bout en bout pour chaque service de façon différenciée, la nécessité de disposer de techniques permettant l'auto-rétablissement des réseaux de transport avec des performances au moins aussi bonnes que celles des réseaux conventionnels, le besoin de disposer d'outils simples et efficaces permettant de gérer et superviser un réseau de plus en plus complexe (en termes de services et de volumes de trafic échangés) et enfin de s'assurer que le nouveau réseau de transport déployé peut passer à l'échelle. L'article décrit comment les nouvelles technologies de transport par paquets répondent à ces points et quels sont les principaux mécanismes qui permettent de réaliser les fonctions précédentes de façon efficace et maîtrisée.

Le lecteur trouvera un tableau des sigles et abréviations en fin d'article (cf. tableau 4).

Lors de la rédaction de l'article, la technologie MPLS-TP était en cours de standardisation au sein de l'IETF (voir § 3.1.1.2). Fin 2009, les déploiements correspondants étaient fondés sur la technologie T-MPLS standardisée par l'ITU-T qui sera remplacée par la technologie MPLS-TP une fois normalisée.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-te7522


Cet article fait partie de l’offre

Réseaux Télécommunications

(141 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

3. Principaux protocoles impliqués

Avant de décrire les principaux protocoles impliqués dans chacune des technologies de transport par paquets, il est important de bien comprendre la différence entre couche de transport et couche de service. Chaque type de trafic mobile (par exemple, téléphonie, Internet, vidéo) est encapsulé dans un tunnel de service sur base d'un identifiant de trafic. Par exemple, l'encapsulation pourra se fonder sur le VP/VC pour un trafic 3G (ATM), sur un port physique pour un trafic 2G (TDM) ou encore sur un niveau de priorité (DSCP) pour un trafic LTE. La couche de service permet donc de multiplexer différents services dans un tunnel de transport. Cette couche de service ne sera pas traitée par les équipements de transport intermédiaires (dits de type P, Provider ) mais uniquement par les équipements terminaux (T-PE, Terminating Provider Edge ) ou dans le cas d'agrégation de tunnels de transport dans le cadre d'un passage à l'échelle (voir § 3.3), par les équipements intermédiaires (I-PE, Intermediate PE ). Trois technologies peuvent être utilisées par ces équipements intermédiaires : S-PE (Switching PE ), VPLS (Virtual Private LAN Service ) et VPRN (Virtual Private Routed Network ). La figure 14 décrit le modèle de référence de la technologie Pseudowire ([IETF_RFC_3985]) et permet d'illustrer cette différence fondamentale.

La figure 15 montre la pile protocolaire de ce modèle de référence. Le label PW est utilisé comme tunnel de service et le label MPLS comme tunnel de transport. Les identifiants utilisés pour ces tunnels sont fonction de la technologie de transport comme illustré au tableau 1.

3.1 Technologies de transport

HAUT DE PAGE

3.1.1 Technologies MPLS

HAUT DE PAGE

3.1.1.1 IP/MPLS

...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Réseaux Télécommunications

(141 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Principaux protocoles impliqués
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - LE PALLEC (M.), THAI BUI (D.), DORGEUILLE (F.), LE SAUZE (N.) -   Time and Frequency Distribution over Packet Switched Networks.  -  Alcatel-Lucent Bell Labs Technical Journal, Wiley Periodicals, 14(2) (2009).

  • (2) -   *  -  GSA http://www.gsacom.com

  • (3) - Heavy Reading -   Ethernet Backhaul Quaterly Market Tracker.  -  Oct. 2009.

  • (4) -   Deploying IP/MPLS in Mobile Networks.  -  Alcatel-Lucent Strategic White Paper.

  • (5) -   LTE Mobile Transport Evolution.  -  Alcatel-Lucent Strategic White Paper.

  • (6) -   Transport MPLS (T-MPLS) – The Transport Technology for Packet-Based Networks.  -  Alcatel-Lucent Technology White Paper.

  • (7)...

NORMES

  • E-model : a computational model for use in transmission planning - ITU-T Rec. G.107 - 04-09

  • Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks - ITU-T Rec. G.783 -

  • Timing Characteristics of Primary Reference Clocks - ITU-T Rec. G.811 -

  • Timing Requirements of Slave Clocks Suitable for Use as Node Clocks in Synchronisation Networks - ITU-T Rec. G.812 - 2004

  • Timing Characteristics of SDH Equipment Slave Clocks (SEC) - ITU-T Rec. G.813 - 2003

  • The Control of jitter and wander within digital networks which are based on the 2 048 kbit/s hierarchy - ITU-T Rec. G.823 - 03-00

  • Types and characteristics of SDH network protection architectures - ITU-T Rec. G.841 -

  • High bit rate digital subscriber line (HDSL) transceivers - ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Réseaux Télécommunications

(141 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS