Présentation
EnglishRÉSUMÉ
Les machines à noyaux constituent une classe d’algorithmes permettant d’extraire de l’information à partir de données dans un cadre non paramétrique. L’intérêt suscité par ces méthodes tient d’abord aux excellentes performances qu’elles ont permis d’obtenir notamment sur les problèmes de grande taille. Cette bonne tenue à la charge est due à la parcimonie de la solution et à la faible complexité de son calcul. L’intérêt des machines à noyaux réside aussi dans leur caractère flexible et rigoureux, approche, qui recèle un grand potentiel. Cet article vise à introduire les machines à noyaux en se focalisant sur la plus populaire, le séparateur à vaste marge.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Stéphane CANU : Professeur des Universités - Directeur du LITIS, INSA de Rouen
INTRODUCTION
Les machines à noyaux constituent une classe d’algorithmes permettant d’extraire de l’information à partir de données dans un cadre non paramétrique. L’intérêt suscité par ces méthodes tient d’abord aux excellentes performances qu’elles ont permis d’obtenir notamment sur les problèmes de grande taille. Cette bonne tenue à la charge est due à la parcimonie de la solution et à la faible complexité de son calcul. L’intérêt des machines à noyaux réside aussi dans leur caractère flexible et rigoureux, approche, qui recèle un grand potentiel. Ce dossier vise à introduire les machines à noyaux en se focalisant sur la plus populaire, le séparateur à vaste marge (SVM), en faisant le point sur les différentes facettes de son utilisation. L’accent est mis sur les considérations pratiques liées à la mise en œuvre de ce type de méthode.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Technologies de l'information > Technologies logicielles Architectures des systèmes > Big Data > Machines à noyaux pour l’apprentissage statistique > Outils
Cet article fait partie de l’offre
Technologies logicielles Architectures des systèmes
(240 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Outils
3.1 Au début était le noyau
Dans le cadre des méthodes d’apprentissage à noyaux, la première chose à faire pour l’ingénieur, qui cherche à construire un système de reconnaissance des formes, est de se donner le ou les noyaux qui feront partie de l’étude .
Soit Ω un ensemble, un noyau k sur Ω est une fonction de deux variables de Ω × Ω à valeur dans . Nous avons vu le noyau comme la fonctionnelle d’évaluation pour l’observation. Si maintenant, on considère la fonction de deux variables, le noyau mesure d’une certaine manière la similarité ou la corrélation entre deux objets. À la lumière de cette analogie, il est naturel de s’intéresser aux noyaux associés à une distance : les noyaux positifs.
Définition 4 : noyau positif
Un noyau k (s, t) sur Ω est dit positif s’il est symétrique (k (s, t) = k (t, s)) et si il vérifie pour tout entier n fini :
Cet article fait partie de l’offre
Technologies logicielles Architectures des systèmes
(240 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Outils
BIBLIOGRAPHIE
-
(1) - VAPNIK (V.) - Statistical Learning Theory - . Wiley, 1998.
-
(2) - HASTIE (T.), TIBSHIRANI (R.), FRIEDMAN (J.) - The elements of statistical learning - . Data Mining, inference and predictions, Springer, 2001.
-
(3) - HERBRICH (R.) - Learning Kernel Classifiers - . The MIT Press, 2002.
-
(4) - SCHOELKOPF (B.), SMOLA (A.J.) - Learning with Kernels - . The MIT Press, 2002.
-
(5) - SHAWE-TAYLOR (J.), CRISTIANIN (N.) - Kernel Methods for Pattern Analysis - . Cambridge Univ. Press, 2004.
-
(6) - * - Trois sites de référence : http://www.kernel-machines.org, http://jmlr.csail.mit.edu, http://www.nips.cc.
-
(7)...
Cet article fait partie de l’offre
Technologies logicielles Architectures des systèmes
(240 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive