Présentation
RÉSUMÉ
Le fort développement des réseaux de communication a relancé la théorie très ancienne des files d'attente. Cet article tente une présentation entre théorie et résultats, en fournissant éléments de base, exemples et preuves dans le but d’illustrer la diversité des applications et de permettre la compréhension de la dynamique sous-jacente. Après une présentation des processus ponctuels généraux et des processus de Poisson, est détaillée la structure des processus de sauts markoviens. Les schémas de Matthes y jouent un rôle central, aussi bien dans la modélisation que dans la simulation de tels processus (simulations à événements discrets). Pour terminer, les différentes catégories de files d'attente et réseaux de files d'attente sont exposées.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jean LACROIX : Professeur des Universités
INTRODUCTION
La théorie des files d'attente, qui est relativement ancienne, connaît actuellement un regain d'intérêt dû à l'extraordinaire développement des réseaux de communication. Il existe une littérature extensive sur la question et cet exposé tente de trouver une voie médiane entre des ouvrages de nature très théorique ou de simples fascicules de résultats. Devant l'impossibilité de procéder à une étude exhaustive des nombreuses situations pratiques, il semble important de fournir au lecteur les éléments de base qui lui permettront de s'adapter à la diversité des applications, et cela, avec un niveau d'abstraction acceptable. C'est pourquoi nombre de preuves et d'exemples sont fournis, pour lui permettre de bien comprendre la dynamique sous-jacente, en particulier les principes de base du concept d'évolution markovienne. Ces calculs et constructions reposent en grande partie sur des considérations développées dans l'article « Chaînes de Markov » dans cette même base documentaire. Après une présentation des processus ponctuels généraux et des processus de Poisson, on s'intéresse à la structure des processus de sauts markoviens. Les schémas de Matthes y jouent un rôle central, aussi bien dans la modélisation que dans la simulation de tels processus (simulations à événements discrets). Les différentes catégories de files d'attente et réseaux de files d'attente sont présentées dans les deux dernières sections. Le lecteur pourra trouver diverses extensions et de nombreux compléments dans les ouvrages cités en référence.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Processus ponctuels et de Poisson
Le processus de Poisson homogène sur (processus de Poisson standard) est l'un des outils principaux dans la modélisation des files d'attente. En fait, ce processus appartient à une classe plus large, celle des processus ponctuels. Bien que ceux-ci ne soient pas directement utilisés dans notre description des files d'attente, nous commencerons néanmoins par en fournir une présentation succincte. En effet, on utilise beaucoup les processus ponctuels dans la modélisation de propagation d'ondes ou de processus stochastiques, en environnement aléatoire ou désordonné, par exemple lorsque des obstacles sont distribués « au hasard » dans l'espace. De plus, ils permettent aussi de mieux comprendre les propriétés du processus de Poisson standard. Les preuves nécessaires à l'assimilation des différents résultats utilisés par la suite sont complètement rédigées ; pour les autres, nous renvoyons, par exemple, à , où l'on utilise des notations identiques. Les lois de Poisson et lois exponentielles étant omniprésentes dans tout cet article, on dit :
-
qu'une variable aléatoire X suit une loi de Poisson de paramètre λ > 0, notée , si X est à valeurs dans et . On a alors ;
-
qu'une variable aléatoire X suit une loi exponentielle de paramètre λ > 0, notée , si X est à valeurs dans et admet la densité ...
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Processus ponctuels et de Poisson
DANS NOS BASES DOCUMENTAIRES
-
Relations entre probabilités et équations aux dérivées partielles
ANNEXES
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive