Présentation
En anglaisAuteur(s)
-
José MARTINEZ : Docteur en sciences - Ingénieur de recherche, Transiciel
-
Pierre GAJAN : Docteur en sciences - Ingénieur de recherche, Office national d’études et de recherches aérospatiales (ONERA)
-
Alain STRZELECKI : Docteur en sciences - Ingénieur de recherche, ONERA
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
L’analyse de Fourier est un outil de base en traitement du signal, indispen-sable dans de nombreux domaines de la recherche, mais elle montre vite des limites justifiées dès lors que l’on sort du cadre rigoureux de sa définition : le domaine des signaux stationnaires d’énergie finie. Dans l’analyse de Fourier, tous les aspects temporels (début, fin, durée d’un événement), bien que présents dans la phase, deviennent illisibles dans le spectre. En particulier, la transformée de Fourier (TF) d’un morceau de musique ne permet pas de retrouver le rythme joué, mais simplement les notes présentes. Le spectre seul ne permet pas de dissocier deux partitions différentes ayant les mêmes notes. Or, on souhaiterait pourtant parfois réaliser à la fois une analyse en temps et en fréquence, pour retrouver la « portée musicale » associée à ces signaux non stationnaires.
L’étude de signaux non stationnaires nécessite donc soit une extension de la TF (ou des méthodes stationnaires), en y introduisant un aspect temporel, soit le développement de méthodes spécifiques.
La première solution, mise en place intuitivement au milieu du siècle, correspond aux analyses de Fourier à fenêtre glissante (FFG) ou Fourier à court terme introduites dès 1945 par D. Gabor [1] avec l’idée d’un plan temps-fréquence où des modulations de fréquences seraient ainsi exprimées, et où le temps deviendrait un paramètre complémentaire de la fréquence. Ces méthodes montrent qu’une localisation exacte conjointe en temps et en fréquence est impossible, et introduisent l’idée d’une base discrète, minimale, traduisant en quelques coefficient la répartition d’énergie du signal dans le plan temps-fréquence ainsi mis en évidence. À ces approches s’est ajoutée la transformée en ondelettes, existant à l’état latent aussi bien en mathématiques qu’en traitement du signal, mais dont le véritable essor a commencé au début des années 1980.
Une deuxième approche possible consiste à considérer la densité d’énergie du signal comme une distribution des deux variables temps et fréquence. Cette décomposition bilinéaire, conjointe, introduite par J. Ville [2], a mis en relief le rôle central de la distribution de Wigner-Ville, puis a débouché sur les classes générales de Cohen affines, englobant les représentations temps-fréquence et précédemment citées [3][4].
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Décompositions linéaires continues
1.1 Fourier à fenêtre glissante
Pour réaliser une analyse spectrale locale d’un signal autour d’un instant arbitraire , il faudrait calculer une transformée de Fourier (TF) du voisinage immédiat de ce point. L’intégrale de Fourier nécessitant un temps d’intégration infini, cela suppose que l’aspect local soit introduit en ne regardant le signal que dans un certain intervalle T proche de , dans lequel on le considère comme stationnaire.
HAUT DE PAGE
Cette démarche revient à tronquer en le segmentant sur une plage de temps finie . Par définition, on ne calcule plus une intégrale de Fourier mais un pseudo-spectre, représentant une approximation de , obtenu comme produit de et d’une porte de largeur T, centrée sur la valeur :
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Décompositions linéaires continues
BIBLIOGRAPHIE
-
(1) - GABOR (D.) - Theory of communication. - Journal IEEE, 93,3, 429-457, 1946.
-
(2) - VILLE (J.) - Théorie et applications de la notion de signal analytique. - Câbles et transmission, n I-2A, 61-74, 1948.
-
(3) - FLANDRIN (P.) - Temps-fréquence. - Hermes, 1993.
-
(4) - COHEN (L.) - Time frequency distributions : A review. - Proceeding of the IEEE, 77, 7, 941-981, juil. 1989.
-
(5) - MORLET (J.) - Sampling theory and wave propagation. - NATO ASI Series, F1, 233-261, Springer-Verlag, Berlin, 1983.
-
(6) - CALDERON (A.P.) - Intermediate Spaces and interpolation, the complex method. - Studia Math., 24, 2, 113-190, 1964.
-
...
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive