Présentation
En anglaisRÉSUMÉ
Le traitement du signal est une discipline très vaste qui consiste à développer des méthodes d'analyse , d'interprétation et de transformation de signaux. Tout support d'informations comme une suite de nombres, une image, une séquence ADN… peut être défini comme un signal. Il est soit analogique, c'est-à-dire le résultat d'un processus de mesure (physique ou autre), soit numérique, lorsqu'il est stocké sur un support numérique quelconque. Dans les deux cas, son traitement recouvre un grand nombre de problématiques, de l'analyse exploratoire au débruitage, en passant par la restauration, le codage et la compression, sans oublier l'échantillonnage. Les signaux peuvent être décrits comme des objets déterministes ou aléatoires, l'approche à l'aide de modèles probabilistes apporte alors de précieux renseignements.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Signal treatment is a vast discipline which consists in developing signal analysis, interpretation and transformation methods. Any information support e.g. a series of numbers, an image or a DNA sequence can be defined as a signal. It is either analogue i.e. the result of a measuring process (physical or other) or digital when it is stored in a given digital medium. In both cases its treatment encompasses a large number of issues from exploratory analysis to denoising and including restoring, coding and compression as well as sampling. Signals can be described as deterministic or aleatory objects and the approach based upon probabilistic models then provides valuable information.
Auteur(s)
-
Bruno TORRÉSANI : Professeur de mathématiques à Aix-Marseille Université, - Laboratoire d'Analyse, Topologie et Probabilités, - Centre de Mathématique et d'Informatique
INTRODUCTION
Le traitement du signal est la discipline qui consiste à développer et étudier des méthodes d'analyse, d'interprétation et de transformation des signaux, un signal pouvant être défini comme un support d'information à peu près quelconque (comme par exemple une suite de nombres, un courant électrique, une séquence ADN, ou encore une image ou une séquence vidéo...). Le traitement du signal fait appel à de nombreuses branches des mathématiques appliquées (notamment l'analyse, la théorie de l'approximation, les probabilités et statistiques, la théorie de l'information...) et maintenant même des mathématiques pures (géométrie, théorie des nombres...). Les signaux se présentent essentiellement sous deux formes : les signaux analogiques qui sont le résultat d'un processus de mesure physique (ou autre), ou obtenus par « conversion numérique analogique », et les signaux numériques stockés sur ordinateur ou un support numérique quelconque, ou produits par une « conversion analogique numérique ». Cette dernière opération, qui est l'une des plus fondamentales des opérations du traitement du signal, porte également le nom d'échantillonnage.
Le traitement du signal recouvre un grand nombre de problématiques, qui vont de l'analyse exploratoire des signaux à des tâches plus complexes comme le débruitage et la restauration de signaux dégradés, le codage et la compression des signaux, images et vidéo, l'estimation de modèles et de paramètres, la détection d'évènements spécifiques dans les signaux et les images... De plus, le cadre applicatif dans lequel ces problèmes sont posés impose souvent de sévères contraintes (causalité, charge de calcul, format des signaux...) qui nécessitent une adaptation du traitement.
Ce dossier décrit un échantillon assez large de méthodes et algorithmes de traitement des signaux et des images, en insistant sur les fondements mathématiques et les algorithmes. La première partie se focalise sur le premier point essentiel, à savoir le problème de la représentation des signaux. Dans ce contexte, l'analyse de Fourier et plus généralement l'analyse mathématique jouent un rôle central. On y discute également l'un des outils essentiels du traitement du signal, à savoir le filtrage de convolution, ainsi que la problématique de l'échantillonnage. Les signaux pouvant être décrits comme des objets soit déterministes, soit aléatoires, un certain nombre de modèles probabilistes sont également discutés en détails, et les notions abordées dans le cadre déterministe sont revisitées dans le cadre des signaux aléatoires.
La deuxième partie de ce dossier est consacrée à quelques problèmes spécifiques d'analyse et traitement des signaux, qui sont traités en exploitant les outils mathématiques décrits dans la première partie. Plus spécifiquement, les problèmes d'analyse et estimation, de codage et compression, et de débruitage sont abordés. La dernière section est quant à elle consacrée à une courte discussion de développements très récents, basés sur un nouveau paradigme, la notion de parcimonie. Certains aspects plus mathématiques ou techniques sont développés dans des annexes.
Le traitement du signal étant une discipline extrêmement vaste, il était impossible d'en couvrir tous les aspects dans un article de ce format. Le lecteur intéressé à approfondir certains aspects peu (ou pas du tout) traités ici est invité à se référer à quelques ouvrages de référence tels que par exemple ou des documents disponibles en ligne (voir la rubrique Sites Internet du Pour en savoir plus).
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Technologies de l'information > Le traitement du signal et ses applications > Traitement du signal : bases théoriques > Méthodes mathématiques pour le traitement des signaux et des images > Exemple d'application : codage et compression des signaux
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Exemple d'application : codage et compression des signaux
Le codage des signaux est un domaine du traitement du signal qui a connu des développements fondamentaux ces vingt dernières années. Depuis le PCM (qui est une simple application du théorème d'échantillonnage et de la quantification) jusqu'aux plus récents des codeurs de son et d'image, des progrès considérables ont été effectués, conduisant à des formats de codage des signaux et images extrêmement efficaces.
4.1 PCM
L'ancêtre des codeurs est PCM (un acronyme pour Pulse Code Modulation). PCM a été beaucoup utilisé pour la téléphonie numérique et les claviers musicaux électroniques dans les années 1980. C'est aussi le standard utilisé pour les CD audio. L'idée du PCM est d'appliquer successivement à un signal analogique un échantillonnage à fréquence fixée, suivie d'une quantification des échantillons, c'est-à-dire une approximation de ceux-ci avec une précision finie, codée sur un nombre fixé de bits. Plus précisément, l'étape de codage (aussi appelée modulation) du PCM effectue les opérations suivantes :
-
partant d'un signal analogique x(t), l'échantillonnage à une fréquence d'échantillonnage η fixée (précédé si nécessaire d'un filtrage passe-bas). Le résultat est un signal numérique x[n] = x(n/η) ;
-
la quantification scalaire (voir l'annexe section 7.4) des échantillons, sur un nombre de bits (le taux) fixé : il s'agit de remplacer les valeurs réelles des échantillons par des valeurs discrètes, représentées par un plus petit nombre de bits. Les échantillons sont quantifiés indépendamment les uns des autres. Si nécessaire, la quantification est précédée d'une étape de transformation, destinée à en améliorer la précision. Dans les applications à la téléphonie, une transformation logarithmique...
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Exemple d'application : codage et compression des signaux
BIBLIOGRAPHIE
-
(1) - CARMONA (R.), HWANG (W.L.), TORRÉSANI (B.) - Practical Time-Frequency Analysis : continuous wavelet and Gabor transforms, with an implementation in S - volume 9 of Wavelet Analysis and its Applications. Academic Press, San Diego (1998).
-
(2) - DAUBECHIES (I.) - Ten lectures on wavelets - SIAM, Philadelphia, PA (1992).
-
(3) - DAUBECHIES (I.), DEFRISE (M.), DE MOL (Ch.) - An iterative thresholding algorithm for linear inverse problems with a sparsity constraint - Communications in Pure and Applied Mathematics, 57(11) : 1413 1457 (2004).
-
(4) - FLANDRIN (P.) - Temps-Fréquence - Traité des Nouvelles Technologies, série Traitement du Signal. Hermés, Paris (1993).
-
(5) - GERSHO (A.), GRAY (R.M.) - Vector quantization and signal compression - Kluwer, Boston (1992).
-
(6) - JAYANT (N.S.), NOLL (P.) - Digital coding of waveforms - Prentice-Hall...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Peter Söndergaard. Ltfat, the linear time-frequency analysis toolbox (matlab/octave, freeware), 2009
The Mathworks. Matlab, 2009
Auteurs multiples. Mathtools.net, link exchange for the technical computing community, 2009
http://www.mathtools.net/MATLAB/Signal_processing/index.html
Auteurs multiples. Wavelab 8.5, wavelet analysis matlab toolbox (freeware), 2009
http://www-stat.stanford.edu/~wavelab/
The Free Software Foundation. Octave, 2009
http://www.gnu.org/software/octave/
HAUT DE PAGE
Rice University DSP group. Compressed sensing resources, 2009
http://www.dsp.ece.rice.edu/cs
Thomas Ströhmer. A first guided tour on the irregular sampling problem, 2000
http://www.math.ucdavis.edu/~strohmer/research/sampling/irsampl.html
Bruno Torrésani. Méthodes mathématiques pour le traitement du signal, 2009, site du cours de Master Mathématiques et Applications, Université de Provence, Marseille
http://www.latp.univ-mrs.fr/~torresan/MMTS.html
Alain Yger. Méthodes mathématiques pour le traitement du signal, 2009, cours de Master Ingéniérie...
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive