Présentation

Article

1 - MOTIVATIONS POUR LE PARALLÉLISME

2 - QU’EST-CE QUE LE PARALLÉLISME ?

3 - SOURCES DU PARALLÉLISME ET OPÉRATIONS FONDAMENTALES

4 - PARALLÉLISME DANS LES MONOPROCESSEURS

5 - CLASSIFICATION DES ARCHITECTURES PARALLÈLES

6 - RESSOURCES DES ARCHITECTURES PARALLÈLES

7 - MODÈLES D’EXÉCUTION

8 - PROGRAMMATION DES ARCHITECTURES PARALLÈLES

9 - LOIS ET MÉTRIQUES DE PERFORMANCES DES ARCHITECTURES PARALLÈLES

10 - REMARQUES POUR CONCLURE

11 - GLOSSAIRE

Article de référence | Réf : H1088 v2

Motivations pour le parallélisme
Introduction au parallélisme et aux architectures parallèles

Auteur(s) : Franck CAPPELLO, Daniel ETIEMBLE

Date de publication : 10 août 2017

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

NOTE DE L'ÉDITEUR

05/08/2017

Cet article est la version actualisée de l’article [H 1 088] intitulé Introduction au parallélisme et aux architectures parallèles, de Franck CAPPELLO et Jean-Paul SANSONNET, paru dans nos éditions en 1999.

RÉSUMÉ

Le parallélisme est dorénavant utilisé dans la majorité des architectures, des systèmes embarqués aux superordinateurs. Les monoprocesseurs sont remplacés par des processeurs multicœurs. Cet article décrit la notion de parallélisme et ses différents types. Il présente les grandes classes d’architectures parallèles avec leurs ressources et organisations mémoire, en distinguant les architectures homogènes et hétérogènes. Les principes des techniques de programmation sont introduits avec les extensions parallèles des langages de programmation couramment utilisés et les modèles de programmation visant à rapprocher la programmation parallèle de la programmation séquentielle, en incluant les spécificités des architectures. Enfin, les modèles et métriques d’évaluation des performances sont examinés.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Franck CAPPELLO : Docteur en Informatique de l’université Paris Sud - IEEE Fellow

  • Daniel ETIEMBLE : Ingénieur de l’INSA de Lyon - Professeur émérite à l’université Paris Sud - Note de l'éditeur : Cet article est la version actualisée de l'article [H 1 088] intitulé Introduction au parallélisme et aux architectures parallèles, de Franck CAPPELLO et Jean-Paul SANSONNET, paru dans nos éditions en 1999.

INTRODUCTION

La notion de parallélisme, qui consiste à utiliser plusieurs processeurs ou opérateurs matériels pour exécuter un ou plusieurs programmes, est ancienne. Les multiprocesseurs datent des années 1960. De cette période jusqu’à la fin des années 1990, des architectures parallèles ont été utilisées pour les applications nécessitant des besoins de calcul que les monoprocesseurs étaient incapables de fournir. Étaient concernés les mainframes et serveurs d’une part, et les machines vectorielles puis parallèles utilisées pour le calcul scientifique hautes performances d’autre part. Les années 1980 ont vu l’apparition de différentes sociétés proposant des machines parallèles, sociétés qui ont assez rapidement disparu. La raison essentielle est liée aux progressions exponentielles des performances des microprocesseurs, utilisés dans les PC et les serveurs multiprocesseurs. L’utilisation massive du parallélisme se limitait aux très grandes applications de simulation numérique avec les architectures massivement parallèles. Le début des années 2000, avec les limitations des monoprocesseurs et le « mur de la chaleur », a complètement changé la situation (voir [H 1 058]). Les processeurs multicœurs sont présents en 2016 dans les architectures matérielles pour tous les types de composants : appareils mobiles (smartphones, tablettes), systèmes embarqués, télévisions, PC portables et PC de bureau, et jusqu’aux machines parallèles et superordinateurs pour la très haute performance.

Dans cet article, nous introduisons la notion de parallélisme, présentons les différents types de parallélisme et les différentes formes d’architectures parallèles. Alors que la programmation des machines parallèles a été longtemps réservée à des spécialistes, tout programmeur doit maintenant maîtriser les notions essentielles de la programmation parallèle pour tirer parti des possibilités des architectures. Nous présentons les extensions parallèles des langages de programmation couramment utilisés, les modèles de programmation développés qui visent à « rapprocher » la programmation parallèle des techniques de la programmation séquentielle tout en prenant en compte les spécificités des architectures parallèles. Enfin, l’intérêt des architectures parallèles réside dans les performances qu’elles permettent d’atteindre. Pour optimiser ces performances et/ou réduire la consommation énergétique, il est nécessaire de modéliser d’une part le parallélisme existant dans une application et d’autre part les architectures parallèles. Nous examinons donc les métriques utilisées pour évaluer ou prévoir les performances et les grandes lois qui les gouvernent.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-h1088


Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

1. Motivations pour le parallélisme

L’exploitation du parallélisme dans l’architecture des ordinateurs est liée à la conjonction de trois éléments : les besoins des applications, les limites des architectures séquentielles et l’existence de parallélisme dans les applications.

1.1 Besoins des applications

La notion de parallélisme est souvent attachée à celle de la performance d’exécution des applications. Ce dernier terme recouvre différentes notions suivant les besoins des applications. En effet, quel que soit le domaine d’application, le parallélisme peut être exploité pour répondre à deux besoins : la puissance de traitement et/ou la disponibilité.

La puissance de traitement recouvre deux grandes notions : le temps de traitement et le débit de traitement. Le premier terme est le temps nécessaire pour l’exécution d’un traitement. Le second représente le nombre de traitements exécutables par unité de temps.

Ces deux notions peuvent être indépendantes. Réduire le temps de traitement est plus difficile qu’augmenter le débit de traitement. Dans le premier cas, il s’agit de lutter contre le temps qui, en dernier ressort, est fixé par les possibilités technologiques. Alors que, dans le deuxième cas, si plusieurs traitements sont indépendants, l’augmentation du nombre de ressources suffit pour exécuter plus de traitements en même temps.

La puissance de traitement dépend aussi de la capacité et de l’organisation de la mémoire d’un ordinateur. Certaines applications requièrent des ensembles de données dont la taille est supérieure à la capacité d’adressage d’un ordinateur séquentiel. Multiplier les ressources qui possèdent chacune leur mémoire permet d’accroître la taille de la mémoire totale adressable. Certaines organisations d’architectures parallèles permettent donc d’adresser plus de mémoire que des architectures séquentielles.

La majorité des applications requérant de hautes performances appartiennent au « supercomputing » ou au « commercial computing ». Le premier domaine concerne les applications du traitement numérique (applications scientifiques ou en ingénierie) alors que le deuxième concerne principalement les applications avec données massives (Big data, Cloud, data centers). Ces deux domaines recouvrent principalement quatre types d’applications :...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Motivations pour le parallélisme
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - KOBAYASHI (H.) -   Feasibility Study of a Future HPC System for Memory-Intensive Applications : Final Report.  -  Proceedings of the joint Workshop on Sustained Simulation Performance, University of Stuttgart (HLRS) and Tohoku University, pp 3-16 (2014).

  • (2) - KOBAYASHI (H.) -   Feasibility Study of a Future HPC System for Memory-Intensive Applications : Final Report.  -  in SuperComputing, NEC Booth, http://jpn.nec.com/hpc/info/pdf/SC13_NEC_Tohoku_Prof.Kobayashi.pdf (2013).

  • (3) - BERNSTEIN (A.J.) -   Analysis of Programs for Parallel Processing.  -  IEEE Transactions on Electronic Computers. EC-15 (5) : 757-763 (October 1966).

  • (4) -   *  -  Intel® 64 and IA-32 Architectures Software Developer Manuals, http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html.

  • (5) -   *  -  ARM Synchronization Primitives, http://infocenter.arm.com/help/topic/com.arm.doc.dht0008a/DHT0008A_arm_synchronization_primitives.pdf.

  • ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS