Présentation
En anglaisRÉSUMÉ
Calculer les valeurs propres et les vecteurs propres de matrices est un important problème en analyse numérique linéaire. Les problèmes de valeurs propres sont très riches, tant par leur variété que par le type de matrices que l'on doit traiter et par les méthodes et algorithmes de calcul à utiliser : les matrices peuvent être symétriques ou non symétriques, creuses ou pleines, et les problèmes peuvent être classiques ou généralisés ou même quadratiques. Il existe des applications qui requièrent le calcul d'un très petit nombre de valeurs propres, d'autres au contraire un grand nombre ou même tout le spectre.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Calculating the eigenvalues and eigenvectors of a matrix is a major issue in linear numerical analysis. Eigenvalue problems are extremely rich, due to their variety, the type of matrices to be treated as well as the methods and calculation algorithms to be used; matrices can be symmetrical or non-symmetrical, hollow or full and the problems can be traditional, generalized or even quadratic. Whereas certain applications require the calculation of a very low number of eigenvalues, others require the calculation of a very large number and even of the whole spectrum.
Auteur(s)
-
Bernard PHILIPPE : INRIA Rennes-Bretagne Atlantique
-
Yousef SAAD : Department of computer science and engineering, university of Minnesota
INTRODUCTION
Calculer les valeurs propres et les vecteurs propres de matrices est un des problèmes les plus importants en analyse numérique linéaire. Les techniques requérant la connaissance du spectre de matrices sont utilisées dans des domaines aussi variés que la mécanique quantique, l'analyse des structures, la théorie des graphes, les modèles de l'économie et le classement des pages de la Toile informatique par les moteurs de recherche.
Par exemple, en mécanique des structures, les problèmes de « résonances » ou de « vibrations » de structures mécaniques, décrits par l'analyse spectrale, se ramènent à des calculs de valeurs et de vecteurs propres.
Les problèmes non symétriques de valeurs propres apparaissent dans l'analyse de la stabilité de systèmes dynamiques. Dans un tout autre domaine, la chimie quantique donne lieu à des problèmes symétriques aux valeurs propres qui peuvent être gigantesques, tant par leur taille que par le nombre de valeurs et de vecteurs propres à extraire. On peut également mentionner que la décomposition aux valeurs singulières, qui est une sorte de généralisation de la décomposition spectrale classique, est primordiale en statistique et dans les problèmes de la « nouvelle économie » (reconnaissance de formes, fouille de données, traitement du signal, exploitation de données, etc.).
Les problèmes de valeurs propres sont très riches, tant par leur variété que par le type de matrices que l'on doit traiter et par les méthodes et algorithmes de calcul à utiliser : les matrices peuvent être symétriques ou non symétriques, creuses ou pleines, et les problèmes peuvent être classiques ou généralisés ou même quadratiques. Il existe des applications qui requièrent le calcul d'un très petit nombre de valeurs propres, d'autres au contraire un grand nombre de valeurs propres ou même tout le spectre.
On essaiera donc dans cet article de survoler les outils permettant de résoudre ces différents cas.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Principes de calcul des valeurs propres
1.1 Applications du calcul des valeurs propres
Une application linéaire d'un espace vectoriel E de dimension n dans lui-même est caractérisée par une matrice A. Celle-ci dépend de la base de référence dans l'espace vectoriel, ce que l'on note . En changeant la base de référence, on change la matrice A en une matrice semblable à A : où les colonnes de X sont les vecteurs de la nouvelle base exprimée dans l'ancienne base. Une question naturelle consiste alors à se demander s'il est possible de choisir la nouvelle base de manière que la matrice ait la forme la plus simple c'est-à-dire la forme diagonale. En effet, y parvenir revient à dire que l'on a pu découpler l'action de l'application linéaire en n applications scalaires.
Supposons qu'il existe une matrice inversible X telle que D = X –1AX soit diagonale. En notant D = diag(λ 1 , ..., λn ) et X = [x 1 , ..., xn ] où les xi représentent les colonnes de X, on en déduit que :
Cela entraîne que les valeurs (λi ) sont telles que (A – λi ...
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Principes de calcul des valeurs propres
BIBLIOGRAPHIE
-
(1) - ANDERSON (E.), BAI (Z.), BISCHOF (C.), BLACKFORD (L.S.), DEMMEL (J.), DONGARRA (J.J.), DU CROZ (J.), HAMMARLING (S.), GREENBAUM (A.), McKENNEY (A.), SORENSEN (D.) - LAPACK Users' guide (3ème éd.). - Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (1999). http://www.netlib.org/lapack/lug/
-
(2) - BAI (Z.), DEMMEL (J.), DONGARRA (J.), RUHE (A.), VAN DER VORST (H.) - Templates for the Solution of Algebraic Eigenvalue Problems : A Practical Guide. - Number 11 in Software, Environments, and Tools. SIAM, Philadelphia (2000).
-
(3) - BENNIGHOF (J.K.), LEHOUCQ (R.B.) - An automated multilevel substructuring method for eigenspace computation in linear elastodynamics. - SIAM J. Sci. Comput., 25(6), p. 2084-2106 (2004).
-
(4) - BOISVERT (R.F.), POZO (R.), REMINGTON (K.), BARRETT (R.), DONGARRA (J.) - The Matrix Market : A Web repository for test matrix data. - In R.F. Boisvert, editor. The Quality of Numerical Software, Assessment and Enhancement. Chapman & Hall, London p. 125-137 (1997).
-
(5) - BREZINSKI (C.), REDIVO ZAGLIA (M.), SADOK (H.) - A review of formal orthogonality in Lanczos-based...
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive