Présentation
En anglaisRÉSUMÉ
La topologie générale est la branche des mathématiques qui traite des notions fondamentales utilisées en topologie et de leurs propriétés. Les intérêts théoriques et applicatifs se situent dans toutes les branches de l’analyse et de la géométrie, et pour d’autres disciplines scientifiques non mathématiques. Cet article porte sur les espaces métriques qui sont des ensembles dans lesquels les distances entre points sont rigoureusement définies, et qui sont des espaces topologiques très utiles. Ensuite sont présentés les concepts topologiques majeurs de séparation, dénombrabilité, de compacité, et de connexité dans le cadre des espaces métriques et le concept de bornitude. La métrisabilité et les théorèmes du point fixe constituent la fin de cet article.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
General topology is the branch of mathematics that deals with the fundamental concepts used in topology, and their properties. Its theoretical and applicational utility is found in all branches of analysis and geometry, and in many other scientific disciplines outside mathematics. This article covers the basics of metric space, i.e. sets in which distances between points are rigorously defined, and which are very useful topological spaces. Then come the major topological concepts of separation, countability, compactness and connectedness in metric spaces, and the concept of boundedness. Lastly, metrizability and the fixed-point theorems are addressed.
Auteur(s)
-
Jean-Charles PINOLI : Professeur - École Nationale Supérieure des Mines de Saint-Étienne, Saint-Étienne, France -
INTRODUCTION
La topologie générale est présentée en une série de six articles ; les deux premiers [AF97] [AF98] portant sur les espaces topologiques, les deux suivants [AF120] [AF121] sur les espaces métriques, et les deux derniers [AF122] [AF123] détaillant près de 150 exemples d’espaces topologiques/métriques possédant ou non les différentes notions topologiques/métriques présentées dans les articles susmentionnés.
La lecture des deux articles de la série portant sur les espaces topologiques [AF97] et [AF98] n’est pas un prérequis, mais est recommandée. Le lecteur pourra s’y référer pour consulter un ou plusieurs points particuliers.
KEYWORDS
compactness | connectedness | fixed-point theorems | topological concepts
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Suites de points et de sous-ensembles
3.1 Suites de points
Dans un espace métrique les suites (dénombrables) de points suffisent pour en caractériser les propriétés topologiques. Les suites généralisées de points ne sont donc pas utiles.
Dans les espaces métriques les suites de points se traitent de manière presque similaires que dans les espaces euclidiens (p. 3 de ).
HAUT DE PAGE3.1.1 Suites de points convergentes
Définition (suite de points convergente). Dans un espace métrique (E,d), une suite de points est convergente (convergent point sequence) vers le point limite x si la suite de nombres réels positifs converge dans vers 0 (p. 250 de ).
Dans un espace métrique (E,d), une suite de points convergente n’a qu’un seul point limite (p. 67 de ).
Dans un espace métrique (E,d), pour deux suites de points
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Suites de points et de sous-ensembles
BIBLIOGRAPHIE
-
(1) - AARTS (J.M.), NISHIURA (T.) - Dimension and Extensions, - North Holland, 331 pages (1993).
-
(2) - ADAMS (C.), FRANZOSA (R.) - Introduction to Topology Pure and Applied, - Pearson, 507 pages (2008).
-
(3) - ADAMSON (I.T.) - A General Topology Workbook, - Springer, 152 pages (1993).
-
(4) - ALEXANDROFF (P.), URYSOHN (P.) - Mémoire sur les espaces topologiques compacts, Verhandelingen der Koninklijke Nederl. Akademie van Wetenschappen te Amsterdam, - Sect. I, 14, pp. 1-96 (1929).
-
(5) - AMBROSIO (L.), TILLI (P.) - Topics on Analysis in Metric Spaces, - Oxford University Press, 133 pages (2004).
-
(6) - APPERT (A.) - Propriétés des espaces abstraits les plus généraux : Ensembles ouverts, fermés, denses en soi,...
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive